Cargando…
Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses
Enteroviruses (EVs) have been associated with several human diseases. Due to their continuous emergence and divergence, EV species have generated more than 100 types and recombinant strains, increasing the public health threat caused by them. Hence, an efficient and universal cloning system for reve...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927166/ https://www.ncbi.nlm.nih.gov/pubmed/36651758 http://dx.doi.org/10.1128/spectrum.03167-22 |
_version_ | 1784888425683353600 |
---|---|
author | Choi, Won-Suk Oh, Sol Antigua, Khristine Joy C. Jeong, Ju Hwan Kim, Beom Kyu Yun, Yu Soo Kang, Da Hyeon Min, Seong Cheol Lim, Byung-Kwan Kim, Won Seop Lee, Ji-Hyuk Kim, Eung-Gook Choi, Young Ki Baek, Yun Hee Song, Min-Suk |
author_facet | Choi, Won-Suk Oh, Sol Antigua, Khristine Joy C. Jeong, Ju Hwan Kim, Beom Kyu Yun, Yu Soo Kang, Da Hyeon Min, Seong Cheol Lim, Byung-Kwan Kim, Won Seop Lee, Ji-Hyuk Kim, Eung-Gook Choi, Young Ki Baek, Yun Hee Song, Min-Suk |
author_sort | Choi, Won-Suk |
collection | PubMed |
description | Enteroviruses (EVs) have been associated with several human diseases. Due to their continuous emergence and divergence, EV species have generated more than 100 types and recombinant strains, increasing the public health threat caused by them. Hence, an efficient and universal cloning system for reverse genetics (RG) of highly divergent viruses is needed to understand the molecular mechanisms of viral pathology and evolution. In this study, we generated a versatile human EV whole-genome cDNA template by enhancing the template-switching method and designing universal primers capable of simultaneous cloning and rapid amplification of cDNA ends (RACE)-PCR of EVs. Moreover, by devising strategies to overcome limitations of previous cloning methods, we simplified significant cloning steps to be completed within a day. Of note, we successfully verified our efficient universal cloning system enabling RG of a broad range of human EVs, including EV-A (EV-A71), EV-B (CV-B5, ECHO6, and ECHO30), EV-C (CV-A24), and EV-D (EV-D68), with viral titers and phenotypes comparable to those of their wild types. This rapid and straightforward universal EV cloning strategy will help us elucidate molecular characteristics, pathogenesis, and applications of a broad range of EV serotypes for further development of genetic vaccines and delivery tools using various replication systems. IMPORTANCE Due to the broad spread, incidence, and genetic divergence of enteroviruses (EVs), it has been challenging to deal with this virus that causes severe human diseases, including aseptic meningitis, myocarditis, encephalitis, and poliomyelitis. Therefore, an efficient and universal cloning system for the reverse genetics of highly divergent EVs contributes to an understanding of the viral pathology and molecular mechanisms of evolution. We have simplified the important cloning steps, hereby enhancing the template-switching method and designing universal primers, which enable the important cloning steps to be completed in a day. We have also successfully demonstrated recovery of a broad range of human EVs, including EV-A to -D types, using this advanced universal cloning system. This rapid and robust universal EV cloning strategy will aid in elucidating the molecular characteristics, pathogenesis, and applications of a wide range of EVs for further development of genetic vaccines and antiviral screening using various replication systems. |
format | Online Article Text |
id | pubmed-9927166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-99271662023-02-15 Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses Choi, Won-Suk Oh, Sol Antigua, Khristine Joy C. Jeong, Ju Hwan Kim, Beom Kyu Yun, Yu Soo Kang, Da Hyeon Min, Seong Cheol Lim, Byung-Kwan Kim, Won Seop Lee, Ji-Hyuk Kim, Eung-Gook Choi, Young Ki Baek, Yun Hee Song, Min-Suk Microbiol Spectr Research Article Enteroviruses (EVs) have been associated with several human diseases. Due to their continuous emergence and divergence, EV species have generated more than 100 types and recombinant strains, increasing the public health threat caused by them. Hence, an efficient and universal cloning system for reverse genetics (RG) of highly divergent viruses is needed to understand the molecular mechanisms of viral pathology and evolution. In this study, we generated a versatile human EV whole-genome cDNA template by enhancing the template-switching method and designing universal primers capable of simultaneous cloning and rapid amplification of cDNA ends (RACE)-PCR of EVs. Moreover, by devising strategies to overcome limitations of previous cloning methods, we simplified significant cloning steps to be completed within a day. Of note, we successfully verified our efficient universal cloning system enabling RG of a broad range of human EVs, including EV-A (EV-A71), EV-B (CV-B5, ECHO6, and ECHO30), EV-C (CV-A24), and EV-D (EV-D68), with viral titers and phenotypes comparable to those of their wild types. This rapid and straightforward universal EV cloning strategy will help us elucidate molecular characteristics, pathogenesis, and applications of a broad range of EV serotypes for further development of genetic vaccines and delivery tools using various replication systems. IMPORTANCE Due to the broad spread, incidence, and genetic divergence of enteroviruses (EVs), it has been challenging to deal with this virus that causes severe human diseases, including aseptic meningitis, myocarditis, encephalitis, and poliomyelitis. Therefore, an efficient and universal cloning system for the reverse genetics of highly divergent EVs contributes to an understanding of the viral pathology and molecular mechanisms of evolution. We have simplified the important cloning steps, hereby enhancing the template-switching method and designing universal primers, which enable the important cloning steps to be completed in a day. We have also successfully demonstrated recovery of a broad range of human EVs, including EV-A to -D types, using this advanced universal cloning system. This rapid and robust universal EV cloning strategy will aid in elucidating the molecular characteristics, pathogenesis, and applications of a wide range of EVs for further development of genetic vaccines and antiviral screening using various replication systems. American Society for Microbiology 2023-01-18 /pmc/articles/PMC9927166/ /pubmed/36651758 http://dx.doi.org/10.1128/spectrum.03167-22 Text en Copyright © 2023 Choi et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Choi, Won-Suk Oh, Sol Antigua, Khristine Joy C. Jeong, Ju Hwan Kim, Beom Kyu Yun, Yu Soo Kang, Da Hyeon Min, Seong Cheol Lim, Byung-Kwan Kim, Won Seop Lee, Ji-Hyuk Kim, Eung-Gook Choi, Young Ki Baek, Yun Hee Song, Min-Suk Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses |
title | Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses |
title_full | Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses |
title_fullStr | Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses |
title_full_unstemmed | Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses |
title_short | Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses |
title_sort | development of a universal cloning system for reverse genetics of human enteroviruses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927166/ https://www.ncbi.nlm.nih.gov/pubmed/36651758 http://dx.doi.org/10.1128/spectrum.03167-22 |
work_keys_str_mv | AT choiwonsuk developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT ohsol developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT antiguakhristinejoyc developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT jeongjuhwan developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT kimbeomkyu developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT yunyusoo developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT kangdahyeon developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT minseongcheol developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT limbyungkwan developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT kimwonseop developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT leejihyuk developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT kimeunggook developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT choiyoungki developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT baekyunhee developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses AT songminsuk developmentofauniversalcloningsystemforreversegeneticsofhumanenteroviruses |