Cargando…

Pseudomonas aeruginosa Promotes Persistence of Stenotrophomonas maltophilia via Increased Adherence to Depolarized Respiratory Epithelium

Stenotrophomonas maltophilia is an emerging opportunistic respiratory pathogen in people with cystic fibrosis (CF). S. maltophilia is frequently observed in polymicrobial infections, and we have previously shown that Pseudomonas aeruginosa promotes colonization and persistence of S. maltophilia in m...

Descripción completa

Detalles Bibliográficos
Autores principales: McDaniel, Melissa S., Lindgren, Natalie R., Billiot, Caitlin E., Valladares, Kristina N., Sumpter, Nicholas A., Swords, W. Edward
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927254/
https://www.ncbi.nlm.nih.gov/pubmed/36472421
http://dx.doi.org/10.1128/spectrum.03846-22
Descripción
Sumario:Stenotrophomonas maltophilia is an emerging opportunistic respiratory pathogen in people with cystic fibrosis (CF). S. maltophilia is frequently observed in polymicrobial infections, and we have previously shown that Pseudomonas aeruginosa promotes colonization and persistence of S. maltophilia in mouse respiratory infections. In this study, we used host and bacterial RNA sequencing to further understand the molecular underpinnings of this interaction. To evaluate S. maltophilia transcript profiles, we used a recently described method for selective capture of bacterial mRNA transcripts with strain-specific RNA probes. We found that factors associated with the type IV pilus, including the histidine kinase subunit of a chemotactic two-component signaling system (chpA), had increased transcript levels during dual-species infection. Using immortalized CF respiratory epithelial cells, we found that infection with P. aeruginosa increases adherence of S. maltophilia, at least in part due to disruption of epithelial tight junctions. In contrast, an isogenic S. maltophilia chpA mutant strain lacked cooperative adherence to CF epithelia and decreased bacterial burden in vivo in dual-species infections with P. aeruginosa. Similarly, P. aeruginosa lacking elastase (lasB) failed to promote S. maltophilia adherence or bacterial colonization and persistence in vivo. Based on these results, we propose that disruption of lung tissue integrity by P. aeruginosa facilitates adherence of S. maltophilia to the lung epithelia, likely in a type IV pilus-dependent manner. These data lend insight into S. maltophilia colonization and persistence in people in later stages of CF disease and may have implications for interactions with other bacterial opportunists. IMPORTANCE Despite advances in treatment options for people with CF, complications of bacterial infections remain the greatest driver of morbidity and mortality in this patient population. These infections often involve more than one bacterial pathogen, and our understanding of how interspecies interactions impact disease progression is lacking. Previous work in our lab found that two CF pathogens, Stenotrophomonas maltophilia and Pseudomonas aeruginosa, can work together in the lung to cause more severe infection. In the present study, we found that infection with P. aeruginosa promotes persistence of S. maltophilia by interfering with epithelial barrier integrity. Depolarization of the epithelial cell layer by P. aeruginosa-secreted elastase increased S. maltophilia adherence, likely in a type IV pilus-dependent manner. Ultimately, this work sheds light on the molecular mechanisms governing an important multispecies interaction seen in pulmonary diseases such as CF.