Cargando…
A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma
BACKGROUND: The prognostic model based on oxidative stress for lung adenocarcinoma (LUAD) remains unclear. METHODS: The information of LUAD patients were acquired from TCGA dataset. We also collected two external datasets from GEO for verification. Oxidative stress-related genes (ORGs) were extracte...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927401/ https://www.ncbi.nlm.nih.gov/pubmed/36798829 http://dx.doi.org/10.3389/fonc.2023.1078697 |
_version_ | 1784888471368761344 |
---|---|
author | Peng, Haijun Li, Xiaoqing Luan, Yanchao Wang, Changjing Wang, Wei |
author_facet | Peng, Haijun Li, Xiaoqing Luan, Yanchao Wang, Changjing Wang, Wei |
author_sort | Peng, Haijun |
collection | PubMed |
description | BACKGROUND: The prognostic model based on oxidative stress for lung adenocarcinoma (LUAD) remains unclear. METHODS: The information of LUAD patients were acquired from TCGA dataset. We also collected two external datasets from GEO for verification. Oxidative stress-related genes (ORGs) were extracted from Genecards. We performed machine learning algorithms, including Univariate Cox regression, Random Survival Forest, and Least Absolute Shrinkage and Selection Operator (Lasso) analyses on the ORGs to build the OS-score and OS-signature. We drew the Kaplan-Meier and time-dependent receiver operating characteristic curve (ROC) to evaluate the efficacy of the OS-signature in predicting the prognosis of LUAD. We used GISTIC 2.0 and maftool algorithms to explore Genomic mutation of OS-signature. To analyze characteristic of tumor infiltrating immune cells, ESTIMATE, TIMER2.0, MCPcounter and ssGSEA algorithms were applied, thus evaluating the immunotherapeutic strategies. Chemotherapeutics sensitivity analysis was based on pRRophetic package. Finally, PCR assays was also used to detect the expression values of related genes in the OS-signature in cell lines. RESULTS: Ten ORGs with prognostic value and the OS-signature containing three prognostic ORGs were identified. The significantly better prognosis of LUAD patients was observed in LUAD patients. The efficiency and accuracy of OS-signature in predicting prognosis for LUAD patients was confirmed by survival ROC curves and two external validation data sets. It was clearly observed that patients with high OS-scores had lower immunomodulators levels (with a few exceptions), stromal score, immune score, ESTIMATE score and infiltrating immune cell populations. On the contrary, patients with higher OS-scores were more likely to have higher tumor purity. PCR assays showed that, MRPL44 and CYCS were significantly higher expressed in LUAD cell lines, while CAT was significantly lower expressed. CONCLUSION: The novel oxidative stress-related model we identified could be used for prognosis and treatment prediction in lung adenocarcinoma. |
format | Online Article Text |
id | pubmed-9927401 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99274012023-02-15 A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma Peng, Haijun Li, Xiaoqing Luan, Yanchao Wang, Changjing Wang, Wei Front Oncol Oncology BACKGROUND: The prognostic model based on oxidative stress for lung adenocarcinoma (LUAD) remains unclear. METHODS: The information of LUAD patients were acquired from TCGA dataset. We also collected two external datasets from GEO for verification. Oxidative stress-related genes (ORGs) were extracted from Genecards. We performed machine learning algorithms, including Univariate Cox regression, Random Survival Forest, and Least Absolute Shrinkage and Selection Operator (Lasso) analyses on the ORGs to build the OS-score and OS-signature. We drew the Kaplan-Meier and time-dependent receiver operating characteristic curve (ROC) to evaluate the efficacy of the OS-signature in predicting the prognosis of LUAD. We used GISTIC 2.0 and maftool algorithms to explore Genomic mutation of OS-signature. To analyze characteristic of tumor infiltrating immune cells, ESTIMATE, TIMER2.0, MCPcounter and ssGSEA algorithms were applied, thus evaluating the immunotherapeutic strategies. Chemotherapeutics sensitivity analysis was based on pRRophetic package. Finally, PCR assays was also used to detect the expression values of related genes in the OS-signature in cell lines. RESULTS: Ten ORGs with prognostic value and the OS-signature containing three prognostic ORGs were identified. The significantly better prognosis of LUAD patients was observed in LUAD patients. The efficiency and accuracy of OS-signature in predicting prognosis for LUAD patients was confirmed by survival ROC curves and two external validation data sets. It was clearly observed that patients with high OS-scores had lower immunomodulators levels (with a few exceptions), stromal score, immune score, ESTIMATE score and infiltrating immune cell populations. On the contrary, patients with higher OS-scores were more likely to have higher tumor purity. PCR assays showed that, MRPL44 and CYCS were significantly higher expressed in LUAD cell lines, while CAT was significantly lower expressed. CONCLUSION: The novel oxidative stress-related model we identified could be used for prognosis and treatment prediction in lung adenocarcinoma. Frontiers Media S.A. 2023-01-31 /pmc/articles/PMC9927401/ /pubmed/36798829 http://dx.doi.org/10.3389/fonc.2023.1078697 Text en Copyright © 2023 Peng, Li, Luan, Wang and Wang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Peng, Haijun Li, Xiaoqing Luan, Yanchao Wang, Changjing Wang, Wei A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma |
title | A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma |
title_full | A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma |
title_fullStr | A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma |
title_full_unstemmed | A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma |
title_short | A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma |
title_sort | novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927401/ https://www.ncbi.nlm.nih.gov/pubmed/36798829 http://dx.doi.org/10.3389/fonc.2023.1078697 |
work_keys_str_mv | AT penghaijun anovelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT lixiaoqing anovelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT luanyanchao anovelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT wangchangjing anovelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT wangwei anovelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT penghaijun novelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT lixiaoqing novelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT luanyanchao novelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT wangchangjing novelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma AT wangwei novelprognosticmodelrelatedtooxidativestressfortreatmentpredictioninlungadenocarcinoma |