Cargando…

Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells

Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets, with high mortality rates. To prevent or mitigate the disease, it is common practice to develop live or inactivated PEDV vaccines based on cell-adapted viral variants. Propagating wild-type P...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Bingqing, Dong, Shijuan, Yu, Li, Si, Fusheng, Li, Chunhua, Xie, Chunfang, Yu, Ruisong, Li, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927491/
https://www.ncbi.nlm.nih.gov/pubmed/36511700
http://dx.doi.org/10.1128/spectrum.03872-22
_version_ 1784888487272513536
author Chen, Bingqing
Dong, Shijuan
Yu, Li
Si, Fusheng
Li, Chunhua
Xie, Chunfang
Yu, Ruisong
Li, Zhen
author_facet Chen, Bingqing
Dong, Shijuan
Yu, Li
Si, Fusheng
Li, Chunhua
Xie, Chunfang
Yu, Ruisong
Li, Zhen
author_sort Chen, Bingqing
collection PubMed
description Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets, with high mortality rates. To prevent or mitigate the disease, it is common practice to develop live or inactivated PEDV vaccines based on cell-adapted viral variants. Propagating wild-type PEDV in cultured cells is, however, often challenging due to the lack of knowledge about the requirements for the cell adaptation of PEDV. In the present study, by using the RNA-targeted reverse genetic system for PEDV to apply S protein swapping followed by the rescue of the recombinant viruses, three key amino acid mutations in the S protein, A605E, E633Q, and R891G, were identified, which enable attenuated PEDV strain DR13 (DR13(att)) to efficiently and productively infect Vero cells, in contrast to the parental DR13 strain (DR13(par)). The former two key mutations reside inside and in the vicinity of the receptor binding domain (RBD), respectively, while the latter occurs at the N-terminal end of the fusion peptide (FP). Besides the three key mutations, other mutations in the S protein further enhanced the infection efficiency of the recombinant viruses. We hypothesize that the three mutations changed PEDV tropism by altering the S2′ cleavage site and the RBD structure. This study provides basic molecular insight into cell adaptation by PEDV, which is also relevant for vaccine design. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a lethal pathogen for newborn piglets, and an efficient vaccine is needed urgently. However, propagating wild-type PEDV in cultured cells for vaccine development is still challenging due to the lack of knowledge about the mechanism of the cell adaptation of PEDV. In this study, we found that three amino acid mutations, A605E, E633Q, and R891G, in the spike protein of the Vero cell-adapted PEDV strain DR13(att) were critical for its cell adaptation. After analyzing the mutation sites in the spike protein, we hypothesize that the cell adaptation of DR13(att) was achieved by altering the S2′ cleavage site and the RBD structure. This study provides new molecular insight into the mechanism of PEDV culture adaptation and new strategies for PEDV vaccine design.
format Online
Article
Text
id pubmed-9927491
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-99274912023-02-15 Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells Chen, Bingqing Dong, Shijuan Yu, Li Si, Fusheng Li, Chunhua Xie, Chunfang Yu, Ruisong Li, Zhen Microbiol Spectr Research Article Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets, with high mortality rates. To prevent or mitigate the disease, it is common practice to develop live or inactivated PEDV vaccines based on cell-adapted viral variants. Propagating wild-type PEDV in cultured cells is, however, often challenging due to the lack of knowledge about the requirements for the cell adaptation of PEDV. In the present study, by using the RNA-targeted reverse genetic system for PEDV to apply S protein swapping followed by the rescue of the recombinant viruses, three key amino acid mutations in the S protein, A605E, E633Q, and R891G, were identified, which enable attenuated PEDV strain DR13 (DR13(att)) to efficiently and productively infect Vero cells, in contrast to the parental DR13 strain (DR13(par)). The former two key mutations reside inside and in the vicinity of the receptor binding domain (RBD), respectively, while the latter occurs at the N-terminal end of the fusion peptide (FP). Besides the three key mutations, other mutations in the S protein further enhanced the infection efficiency of the recombinant viruses. We hypothesize that the three mutations changed PEDV tropism by altering the S2′ cleavage site and the RBD structure. This study provides basic molecular insight into cell adaptation by PEDV, which is also relevant for vaccine design. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a lethal pathogen for newborn piglets, and an efficient vaccine is needed urgently. However, propagating wild-type PEDV in cultured cells for vaccine development is still challenging due to the lack of knowledge about the mechanism of the cell adaptation of PEDV. In this study, we found that three amino acid mutations, A605E, E633Q, and R891G, in the spike protein of the Vero cell-adapted PEDV strain DR13(att) were critical for its cell adaptation. After analyzing the mutation sites in the spike protein, we hypothesize that the cell adaptation of DR13(att) was achieved by altering the S2′ cleavage site and the RBD structure. This study provides new molecular insight into the mechanism of PEDV culture adaptation and new strategies for PEDV vaccine design. American Society for Microbiology 2022-12-13 /pmc/articles/PMC9927491/ /pubmed/36511700 http://dx.doi.org/10.1128/spectrum.03872-22 Text en Copyright © 2022 Chen et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Chen, Bingqing
Dong, Shijuan
Yu, Li
Si, Fusheng
Li, Chunhua
Xie, Chunfang
Yu, Ruisong
Li, Zhen
Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells
title Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells
title_full Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells
title_fullStr Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells
title_full_unstemmed Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells
title_short Three Amino Acid Substitutions in the Spike Protein Enable the Coronavirus Porcine Epidemic Diarrhea Virus To Infect Vero Cells
title_sort three amino acid substitutions in the spike protein enable the coronavirus porcine epidemic diarrhea virus to infect vero cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927491/
https://www.ncbi.nlm.nih.gov/pubmed/36511700
http://dx.doi.org/10.1128/spectrum.03872-22
work_keys_str_mv AT chenbingqing threeaminoacidsubstitutionsinthespikeproteinenablethecoronavirusporcineepidemicdiarrheavirustoinfectverocells
AT dongshijuan threeaminoacidsubstitutionsinthespikeproteinenablethecoronavirusporcineepidemicdiarrheavirustoinfectverocells
AT yuli threeaminoacidsubstitutionsinthespikeproteinenablethecoronavirusporcineepidemicdiarrheavirustoinfectverocells
AT sifusheng threeaminoacidsubstitutionsinthespikeproteinenablethecoronavirusporcineepidemicdiarrheavirustoinfectverocells
AT lichunhua threeaminoacidsubstitutionsinthespikeproteinenablethecoronavirusporcineepidemicdiarrheavirustoinfectverocells
AT xiechunfang threeaminoacidsubstitutionsinthespikeproteinenablethecoronavirusporcineepidemicdiarrheavirustoinfectverocells
AT yuruisong threeaminoacidsubstitutionsinthespikeproteinenablethecoronavirusporcineepidemicdiarrheavirustoinfectverocells
AT lizhen threeaminoacidsubstitutionsinthespikeproteinenablethecoronavirusporcineepidemicdiarrheavirustoinfectverocells