Cargando…
G-RANK: an equivariant graph neural network for the scoring of protein–protein docking models
MOTIVATION: Protein complex structure prediction is important for many applications in bioengineering. A widely used method for predicting the structure of protein complexes is computational docking. Although many tools for scoring protein–protein docking models have been developed, it is still a ch...
Autores principales: | Kim, Ha Young, Kim, Sungsik, Park, Woong-Yang, Kim, Dongsup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927558/ https://www.ncbi.nlm.nih.gov/pubmed/36818727 http://dx.doi.org/10.1093/bioadv/vbad011 |
Ejemplares similares
-
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
3D-equivariant graph neural networks for protein model quality assessment
por: Chen, Chen, et al.
Publicado: (2023) -
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function
por: Boadu, Frimpong, et al.
Publicado: (2023) -
E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction
por: Roche, Rahmatullah, et al.
Publicado: (2023)