Cargando…
SELDNet: Sequenced encoder and lightweight decoder network for COVID-19 infection region segmentation()
Segmenting regions of lung infection from computed tomography (CT) images shows excellent potential for rapid and accurate quantifying of Coronavirus disease 2019 (COVID-19) infection and determining disease development and treatment approaches. However, a number of challenges remain, including the...
Autores principales: | Fan, Xiaole, Feng, Xiufang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927817/ https://www.ncbi.nlm.nih.gov/pubmed/36818573 http://dx.doi.org/10.1016/j.displa.2023.102395 |
Ejemplares similares
-
EDPNet: An Encoding–Decoding Network with Pyramidal Representation for Semantic Image Segmentation
por: Chen, Dong, et al.
Publicado: (2023) -
An Encoder–Decoder-Based Method for Segmentation of COVID-19 Lung Infection in CT Images
por: Elharrouss, Omar, et al.
Publicado: (2021) -
Neuron segmentation using 3D wavelet integrated encoder–decoder network
por: Li, Qiufu, et al.
Publicado: (2021) -
A combined encoder–transformer–decoder network for volumetric segmentation of adrenal tumors
por: Wang, Liping, et al.
Publicado: (2023) -
Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images
por: Lewis, John, et al.
Publicado: (2023)