Cargando…

Waking immune-resistant tumors with neddylation

The CD47/signal regulatory protein α (SIRPα) axis, which functions as an inhibitory phagocytosis checkpoint, also serves as a key mediator in cancer immune evasion. Many cancers, including colorectal cancer (CRC), exploit the expression of CD47 to escape phagocytic clearance and activate the innate...

Descripción completa

Detalles Bibliográficos
Autores principales: Huntoon, Kristin, Jiang, Wen, Kim, Betty Y.S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927922/
https://www.ncbi.nlm.nih.gov/pubmed/36787255
http://dx.doi.org/10.1172/JCI167894
Descripción
Sumario:The CD47/signal regulatory protein α (SIRPα) axis, which functions as an inhibitory phagocytosis checkpoint, also serves as a key mediator in cancer immune evasion. Many cancers, including colorectal cancer (CRC), exploit the expression of CD47 to escape phagocytic clearance and activate the innate immune system. Previous work has indicated that distinct paradigms of posttranslational modifications mediate the regulatory mechanisms of the CD47/SIRPα axis. In this issue of the JCI, Li et al. show that neddylation, a ubiquitin-like modification, inactivates Src homology region 2–containing protein tyrosine phosphatase 2 (SHP2), a downstream target of this pathway. They further show that inhibition of SHP2 sensitizes CRC cells to immunotherapies to which they were previously resistant. Collectively, the results underscore the need for cotargeting SHP2 and immune checkpoints (e.g., programmed death 1 [PD1]) in CRC and possibly other immunotherapy-resistant tumors.