Cargando…

Cell-free Chromatin Immunoprecipitation to detect molecular pathways in Physiological and Disease States

Patient monitoring is a cornerstone in clinical practice to define disease phenotypes and guide clinical management. Unfortunately, this is often reliant on invasive and/or less sensitive methods that do not provide deep phenotype assessments of disease state to guide treatment. This paper examined...

Descripción completa

Detalles Bibliográficos
Autores principales: Jang, Moon K., Markowitz, Tovah E., Andargie, Temesgen E., Apalara, Zainab, Kuhn, Skyler, Agbor-Enoh, Sean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928031/
https://www.ncbi.nlm.nih.gov/pubmed/36789421
http://dx.doi.org/10.1101/2023.01.24.525414
Descripción
Sumario:Patient monitoring is a cornerstone in clinical practice to define disease phenotypes and guide clinical management. Unfortunately, this is often reliant on invasive and/or less sensitive methods that do not provide deep phenotype assessments of disease state to guide treatment. This paper examined plasma cell-free DNA chromatin immunoprecipitation sequencing (cfChIP-seq) to define molecular gene sets in physiological and heart transplant patients taking immunosuppression medications. We show cfChIP-seq reliably detect gene signals that correlate with gene expression. In healthy controls and in heart transplant patients, cfChIP-seq reliably detected housekeeping genes. cfChIP-seq identified differential gene signals of the relevant immune and non-immune molecular pathways that were predominantly downregulated in immunosuppressed heart transplant patients compared to healthy controls. cfChIP-seq also identified tissue sources of cfDNA, detecting greater cell-free DNA from cardiac, hematopoietic, and other non-hematopoietic tissues such as the pulmonary, digestive, and neurological tissues in transplant patients than healthy controls. cfChIP-seq gene signals were reproducible between patient populations and blood collection methods. cfChIP-seq may therefore be a reliable approach to provide dynamic assessments of molecular pathways and tissue injury associated to disease.