Cargando…
FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries
Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformatio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928041/ https://www.ncbi.nlm.nih.gov/pubmed/36789411 http://dx.doi.org/10.1101/2023.01.27.525885 |
_version_ | 1784888571906228224 |
---|---|
author | Montepietra, Daniele Tesei, Giulio Martins, João M. Kunze, Micha B. A. Best, Robert B. Lindorff-Larsen, Kresten |
author_facet | Montepietra, Daniele Tesei, Giulio Martins, João M. Kunze, Micha B. A. Best, Robert B. Lindorff-Larsen, Kresten |
author_sort | Montepietra, Daniele |
collection | PubMed |
description | Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict. |
format | Online Article Text |
id | pubmed-9928041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-99280412023-02-15 FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries Montepietra, Daniele Tesei, Giulio Martins, João M. Kunze, Micha B. A. Best, Robert B. Lindorff-Larsen, Kresten bioRxiv Article Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict. Cold Spring Harbor Laboratory 2023-01-28 /pmc/articles/PMC9928041/ /pubmed/36789411 http://dx.doi.org/10.1101/2023.01.27.525885 Text en This article is a US Government work. |
spellingShingle | Article Montepietra, Daniele Tesei, Giulio Martins, João M. Kunze, Micha B. A. Best, Robert B. Lindorff-Larsen, Kresten FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries |
title | FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries |
title_full | FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries |
title_fullStr | FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries |
title_full_unstemmed | FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries |
title_short | FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries |
title_sort | fretpredict: a python package for fret efficiency predictions using rotamer libraries |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928041/ https://www.ncbi.nlm.nih.gov/pubmed/36789411 http://dx.doi.org/10.1101/2023.01.27.525885 |
work_keys_str_mv | AT montepietradaniele fretpredictapythonpackageforfretefficiencypredictionsusingrotamerlibraries AT teseigiulio fretpredictapythonpackageforfretefficiencypredictionsusingrotamerlibraries AT martinsjoaom fretpredictapythonpackageforfretefficiencypredictionsusingrotamerlibraries AT kunzemichaba fretpredictapythonpackageforfretefficiencypredictionsusingrotamerlibraries AT bestrobertb fretpredictapythonpackageforfretefficiencypredictionsusingrotamerlibraries AT lindorfflarsenkresten fretpredictapythonpackageforfretefficiencypredictionsusingrotamerlibraries |