Cargando…

Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images

We demonstrate automated segmentation of clear cell renal cell carcinomas (ccRCC), cysts, and surrounding normal kidney parenchyma in patients with von Hippel-Lindau (VHL) syndrome using convolutional neural networks (CNN) on Magnetic Resonance Imaging (MRI). We queried 115 VHL patients and 117 scan...

Descripción completa

Detalles Bibliográficos
Autores principales: Anari, Pouria Yazdian, Lay, Nathan, Chaurasia, Aditi, Gopal, Nikhil, Samimi, Safa, Harmon, Stephanie, Gautam, Rabindra, Ma, Kevin, Firouzabadi, Fatemeh Dehghani, Turkbey, Evrim, Merino, Maria, Jones, Elizabeth C., Ball, Mark W., Linehan, W. Marston, Turkbey, Baris, Malayeri, Ashkan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928055/
https://www.ncbi.nlm.nih.gov/pubmed/36789136
_version_ 1784888573651058688
author Anari, Pouria Yazdian
Lay, Nathan
Chaurasia, Aditi
Gopal, Nikhil
Samimi, Safa
Harmon, Stephanie
Gautam, Rabindra
Ma, Kevin
Firouzabadi, Fatemeh Dehghani
Turkbey, Evrim
Merino, Maria
Jones, Elizabeth C.
Ball, Mark W.
Linehan, W. Marston
Turkbey, Baris
Malayeri, Ashkan A.
author_facet Anari, Pouria Yazdian
Lay, Nathan
Chaurasia, Aditi
Gopal, Nikhil
Samimi, Safa
Harmon, Stephanie
Gautam, Rabindra
Ma, Kevin
Firouzabadi, Fatemeh Dehghani
Turkbey, Evrim
Merino, Maria
Jones, Elizabeth C.
Ball, Mark W.
Linehan, W. Marston
Turkbey, Baris
Malayeri, Ashkan A.
author_sort Anari, Pouria Yazdian
collection PubMed
description We demonstrate automated segmentation of clear cell renal cell carcinomas (ccRCC), cysts, and surrounding normal kidney parenchyma in patients with von Hippel-Lindau (VHL) syndrome using convolutional neural networks (CNN) on Magnetic Resonance Imaging (MRI). We queried 115 VHL patients and 117 scans (3 patients have two separate scans) with 504 ccRCCs and 1171 cysts from 2015 to 2021. Lesions were manually segmented on T1 excretory phase, co-registered on all contrast-enhanced T1 sequences and used to train 2D and 3D U-Net. The U-Net performance was evaluated on 10 randomized splits of the cohort. The models were evaluated using the dice similarity coefficient (DSC). Our 2D U-Net achieved an average ccRCC lesion detection Area under the curve (AUC) of 0.88 and DSC scores of 0.78, 0.40, and 0.46 for segmentation of the kidney, cysts, and tumors, respectively. Our 3D U-Net achieved an average ccRCC lesion detection AUC of 0.79 and DSC scores of 0.67, 0.32, and 0.34 for kidney, cysts, and tumors, respectively. We demonstrated good detection and moderate segmentation results using U-Net for ccRCC on MRI. Automatic detection and segmentation of normal renal parenchyma, cysts, and masses may assist radiologists in quantifying the burden of disease in patients with VHL.
format Online
Article
Text
id pubmed-9928055
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cornell University
record_format MEDLINE/PubMed
spelling pubmed-99280552023-02-15 Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images Anari, Pouria Yazdian Lay, Nathan Chaurasia, Aditi Gopal, Nikhil Samimi, Safa Harmon, Stephanie Gautam, Rabindra Ma, Kevin Firouzabadi, Fatemeh Dehghani Turkbey, Evrim Merino, Maria Jones, Elizabeth C. Ball, Mark W. Linehan, W. Marston Turkbey, Baris Malayeri, Ashkan A. ArXiv Article We demonstrate automated segmentation of clear cell renal cell carcinomas (ccRCC), cysts, and surrounding normal kidney parenchyma in patients with von Hippel-Lindau (VHL) syndrome using convolutional neural networks (CNN) on Magnetic Resonance Imaging (MRI). We queried 115 VHL patients and 117 scans (3 patients have two separate scans) with 504 ccRCCs and 1171 cysts from 2015 to 2021. Lesions were manually segmented on T1 excretory phase, co-registered on all contrast-enhanced T1 sequences and used to train 2D and 3D U-Net. The U-Net performance was evaluated on 10 randomized splits of the cohort. The models were evaluated using the dice similarity coefficient (DSC). Our 2D U-Net achieved an average ccRCC lesion detection Area under the curve (AUC) of 0.88 and DSC scores of 0.78, 0.40, and 0.46 for segmentation of the kidney, cysts, and tumors, respectively. Our 3D U-Net achieved an average ccRCC lesion detection AUC of 0.79 and DSC scores of 0.67, 0.32, and 0.34 for kidney, cysts, and tumors, respectively. We demonstrated good detection and moderate segmentation results using U-Net for ccRCC on MRI. Automatic detection and segmentation of normal renal parenchyma, cysts, and masses may assist radiologists in quantifying the burden of disease in patients with VHL. Cornell University 2023-01-06 /pmc/articles/PMC9928055/ /pubmed/36789136 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Anari, Pouria Yazdian
Lay, Nathan
Chaurasia, Aditi
Gopal, Nikhil
Samimi, Safa
Harmon, Stephanie
Gautam, Rabindra
Ma, Kevin
Firouzabadi, Fatemeh Dehghani
Turkbey, Evrim
Merino, Maria
Jones, Elizabeth C.
Ball, Mark W.
Linehan, W. Marston
Turkbey, Baris
Malayeri, Ashkan A.
Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images
title Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images
title_full Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images
title_fullStr Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images
title_full_unstemmed Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images
title_short Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images
title_sort automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von hippel-lindau syndrome using u-net architecture on magnetic resonance images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928055/
https://www.ncbi.nlm.nih.gov/pubmed/36789136
work_keys_str_mv AT anaripouriayazdian automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT laynathan automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT chaurasiaaditi automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT gopalnikhil automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT samimisafa automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT harmonstephanie automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT gautamrabindra automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT makevin automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT firouzabadifatemehdehghani automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT turkbeyevrim automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT merinomaria automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT joneselizabethc automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT ballmarkw automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT linehanwmarston automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT turkbeybaris automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages
AT malayeriashkana automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages