Cargando…
Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images
We demonstrate automated segmentation of clear cell renal cell carcinomas (ccRCC), cysts, and surrounding normal kidney parenchyma in patients with von Hippel-Lindau (VHL) syndrome using convolutional neural networks (CNN) on Magnetic Resonance Imaging (MRI). We queried 115 VHL patients and 117 scan...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928055/ https://www.ncbi.nlm.nih.gov/pubmed/36789136 |
_version_ | 1784888573651058688 |
---|---|
author | Anari, Pouria Yazdian Lay, Nathan Chaurasia, Aditi Gopal, Nikhil Samimi, Safa Harmon, Stephanie Gautam, Rabindra Ma, Kevin Firouzabadi, Fatemeh Dehghani Turkbey, Evrim Merino, Maria Jones, Elizabeth C. Ball, Mark W. Linehan, W. Marston Turkbey, Baris Malayeri, Ashkan A. |
author_facet | Anari, Pouria Yazdian Lay, Nathan Chaurasia, Aditi Gopal, Nikhil Samimi, Safa Harmon, Stephanie Gautam, Rabindra Ma, Kevin Firouzabadi, Fatemeh Dehghani Turkbey, Evrim Merino, Maria Jones, Elizabeth C. Ball, Mark W. Linehan, W. Marston Turkbey, Baris Malayeri, Ashkan A. |
author_sort | Anari, Pouria Yazdian |
collection | PubMed |
description | We demonstrate automated segmentation of clear cell renal cell carcinomas (ccRCC), cysts, and surrounding normal kidney parenchyma in patients with von Hippel-Lindau (VHL) syndrome using convolutional neural networks (CNN) on Magnetic Resonance Imaging (MRI). We queried 115 VHL patients and 117 scans (3 patients have two separate scans) with 504 ccRCCs and 1171 cysts from 2015 to 2021. Lesions were manually segmented on T1 excretory phase, co-registered on all contrast-enhanced T1 sequences and used to train 2D and 3D U-Net. The U-Net performance was evaluated on 10 randomized splits of the cohort. The models were evaluated using the dice similarity coefficient (DSC). Our 2D U-Net achieved an average ccRCC lesion detection Area under the curve (AUC) of 0.88 and DSC scores of 0.78, 0.40, and 0.46 for segmentation of the kidney, cysts, and tumors, respectively. Our 3D U-Net achieved an average ccRCC lesion detection AUC of 0.79 and DSC scores of 0.67, 0.32, and 0.34 for kidney, cysts, and tumors, respectively. We demonstrated good detection and moderate segmentation results using U-Net for ccRCC on MRI. Automatic detection and segmentation of normal renal parenchyma, cysts, and masses may assist radiologists in quantifying the burden of disease in patients with VHL. |
format | Online Article Text |
id | pubmed-9928055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cornell University |
record_format | MEDLINE/PubMed |
spelling | pubmed-99280552023-02-15 Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images Anari, Pouria Yazdian Lay, Nathan Chaurasia, Aditi Gopal, Nikhil Samimi, Safa Harmon, Stephanie Gautam, Rabindra Ma, Kevin Firouzabadi, Fatemeh Dehghani Turkbey, Evrim Merino, Maria Jones, Elizabeth C. Ball, Mark W. Linehan, W. Marston Turkbey, Baris Malayeri, Ashkan A. ArXiv Article We demonstrate automated segmentation of clear cell renal cell carcinomas (ccRCC), cysts, and surrounding normal kidney parenchyma in patients with von Hippel-Lindau (VHL) syndrome using convolutional neural networks (CNN) on Magnetic Resonance Imaging (MRI). We queried 115 VHL patients and 117 scans (3 patients have two separate scans) with 504 ccRCCs and 1171 cysts from 2015 to 2021. Lesions were manually segmented on T1 excretory phase, co-registered on all contrast-enhanced T1 sequences and used to train 2D and 3D U-Net. The U-Net performance was evaluated on 10 randomized splits of the cohort. The models were evaluated using the dice similarity coefficient (DSC). Our 2D U-Net achieved an average ccRCC lesion detection Area under the curve (AUC) of 0.88 and DSC scores of 0.78, 0.40, and 0.46 for segmentation of the kidney, cysts, and tumors, respectively. Our 3D U-Net achieved an average ccRCC lesion detection AUC of 0.79 and DSC scores of 0.67, 0.32, and 0.34 for kidney, cysts, and tumors, respectively. We demonstrated good detection and moderate segmentation results using U-Net for ccRCC on MRI. Automatic detection and segmentation of normal renal parenchyma, cysts, and masses may assist radiologists in quantifying the burden of disease in patients with VHL. Cornell University 2023-01-06 /pmc/articles/PMC9928055/ /pubmed/36789136 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Anari, Pouria Yazdian Lay, Nathan Chaurasia, Aditi Gopal, Nikhil Samimi, Safa Harmon, Stephanie Gautam, Rabindra Ma, Kevin Firouzabadi, Fatemeh Dehghani Turkbey, Evrim Merino, Maria Jones, Elizabeth C. Ball, Mark W. Linehan, W. Marston Turkbey, Baris Malayeri, Ashkan A. Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images |
title | Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images |
title_full | Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images |
title_fullStr | Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images |
title_full_unstemmed | Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images |
title_short | Automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von Hippel-Lindau syndrome using U-net architecture on magnetic resonance images |
title_sort | automatic segmentation of clear cell renal cell tumors, kidney, and cysts in patients with von hippel-lindau syndrome using u-net architecture on magnetic resonance images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928055/ https://www.ncbi.nlm.nih.gov/pubmed/36789136 |
work_keys_str_mv | AT anaripouriayazdian automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT laynathan automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT chaurasiaaditi automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT gopalnikhil automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT samimisafa automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT harmonstephanie automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT gautamrabindra automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT makevin automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT firouzabadifatemehdehghani automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT turkbeyevrim automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT merinomaria automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT joneselizabethc automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT ballmarkw automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT linehanwmarston automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT turkbeybaris automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages AT malayeriashkana automaticsegmentationofclearcellrenalcelltumorskidneyandcystsinpatientswithvonhippellindausyndromeusingunetarchitectureonmagneticresonanceimages |