Cargando…
Optimal deployment of automated external defibrillators in a long and narrow environment
AIM OF THE STUDY: Public access to automated external defibrillators (AEDs) plays a key role in increasing survival outcomes for patients with out-of-hospital cardiac arrest. Based on the concept of maximizing “rescue benefit” of AEDs, we aimed to propose a systematic methodology for optimizing the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928064/ https://www.ncbi.nlm.nih.gov/pubmed/36787315 http://dx.doi.org/10.1371/journal.pone.0264098 |
_version_ | 1784888575692636160 |
---|---|
author | Lin, Chih-Hao Chu, Kuan-Chao Lee, Jung-Ting Kao, Chung-Yao |
author_facet | Lin, Chih-Hao Chu, Kuan-Chao Lee, Jung-Ting Kao, Chung-Yao |
author_sort | Lin, Chih-Hao |
collection | PubMed |
description | AIM OF THE STUDY: Public access to automated external defibrillators (AEDs) plays a key role in increasing survival outcomes for patients with out-of-hospital cardiac arrest. Based on the concept of maximizing “rescue benefit” of AEDs, we aimed to propose a systematic methodology for optimizing the deployment of AEDs, and develop such strategies for long and narrow spaces. METHODS: We classified the effective coverage of an AED in hot, warm, and cold zones. The AEDs were categorized, according to their accessibility, as fixed, summonable, or patrolling types. The overall rescue benefit of the AEDs were evaluated by the weighted size of their collective hot zones. The optimal strategies for the deployment of AEDs were derived mathematically and numerically verified by computer programs. RESULTS: To maximize the overall rescue benefit of the AEDs, the AEDs should avoid overlapping with each other’s coverage as much as possible. Specific rules for optimally deploying one, two, or multiple AEDs, and various types of AEDs are summarized and presented. CONCLUSION: A methodology for assessing the rescue benefit of deployed AEDs was proposed, and deployment strategies for maximizing the rescue benefit of AEDs along a long, narrow, corridor-like, finite space were derived. The strategies are simple and readily implementable. Our methodology can be easily generalized to search for optimal deployment of AEDs in planar areas or three-dimensional spaces. |
format | Online Article Text |
id | pubmed-9928064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-99280642023-02-15 Optimal deployment of automated external defibrillators in a long and narrow environment Lin, Chih-Hao Chu, Kuan-Chao Lee, Jung-Ting Kao, Chung-Yao PLoS One Research Article AIM OF THE STUDY: Public access to automated external defibrillators (AEDs) plays a key role in increasing survival outcomes for patients with out-of-hospital cardiac arrest. Based on the concept of maximizing “rescue benefit” of AEDs, we aimed to propose a systematic methodology for optimizing the deployment of AEDs, and develop such strategies for long and narrow spaces. METHODS: We classified the effective coverage of an AED in hot, warm, and cold zones. The AEDs were categorized, according to their accessibility, as fixed, summonable, or patrolling types. The overall rescue benefit of the AEDs were evaluated by the weighted size of their collective hot zones. The optimal strategies for the deployment of AEDs were derived mathematically and numerically verified by computer programs. RESULTS: To maximize the overall rescue benefit of the AEDs, the AEDs should avoid overlapping with each other’s coverage as much as possible. Specific rules for optimally deploying one, two, or multiple AEDs, and various types of AEDs are summarized and presented. CONCLUSION: A methodology for assessing the rescue benefit of deployed AEDs was proposed, and deployment strategies for maximizing the rescue benefit of AEDs along a long, narrow, corridor-like, finite space were derived. The strategies are simple and readily implementable. Our methodology can be easily generalized to search for optimal deployment of AEDs in planar areas or three-dimensional spaces. Public Library of Science 2023-02-14 /pmc/articles/PMC9928064/ /pubmed/36787315 http://dx.doi.org/10.1371/journal.pone.0264098 Text en © 2023 Lin et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lin, Chih-Hao Chu, Kuan-Chao Lee, Jung-Ting Kao, Chung-Yao Optimal deployment of automated external defibrillators in a long and narrow environment |
title | Optimal deployment of automated external defibrillators in a long and narrow environment |
title_full | Optimal deployment of automated external defibrillators in a long and narrow environment |
title_fullStr | Optimal deployment of automated external defibrillators in a long and narrow environment |
title_full_unstemmed | Optimal deployment of automated external defibrillators in a long and narrow environment |
title_short | Optimal deployment of automated external defibrillators in a long and narrow environment |
title_sort | optimal deployment of automated external defibrillators in a long and narrow environment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928064/ https://www.ncbi.nlm.nih.gov/pubmed/36787315 http://dx.doi.org/10.1371/journal.pone.0264098 |
work_keys_str_mv | AT linchihhao optimaldeploymentofautomatedexternaldefibrillatorsinalongandnarrowenvironment AT chukuanchao optimaldeploymentofautomatedexternaldefibrillatorsinalongandnarrowenvironment AT leejungting optimaldeploymentofautomatedexternaldefibrillatorsinalongandnarrowenvironment AT kaochungyao optimaldeploymentofautomatedexternaldefibrillatorsinalongandnarrowenvironment |