Cargando…
Three-Dimensional Printed MoS(2)/Graphene Aerogel Electrodes for Hydrogen Evolution Reactions
[Image: see text] In this work, we demonstrate the use of direct ink writing (DIW) technology to create 3D catalytic electrodes for electrochemical applications. Hybrid MoS(2)/graphene aerogels are made by mixing commercially available MoS(2) and graphene oxide powders into a thixotropic, high conce...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928410/ https://www.ncbi.nlm.nih.gov/pubmed/36855624 http://dx.doi.org/10.1021/acsmaterialsau.2c00014 |
Sumario: | [Image: see text] In this work, we demonstrate the use of direct ink writing (DIW) technology to create 3D catalytic electrodes for electrochemical applications. Hybrid MoS(2)/graphene aerogels are made by mixing commercially available MoS(2) and graphene oxide powders into a thixotropic, high concentration, viscous ink. A porous 3D structure of 2D graphene sheets and MoS(2) particles was created after post treatment by freeze-drying and reducing graphene oxide through annealing. The composition and morphology of the samples were fully characterized through XPS, BET, and SEM/EDS. The resulting 3D printed MoS(2)/graphene aerogel electrodes had a remarkable electrochemically active surface area (>1700 cm(2)) and were able to achieve currents over 100 mA in acidic media. Notably, the catalytic activity of the MoS(2)/graphene aerogel electrodes was maintained with minimal loss in surface area compared to the non-3D printed electrodes, suggesting that DIW can be a viable method of producing durable electrodes with a high surface area for water splitting. This demonstrates that 3D printing a MoS(2)/graphene 3D porous network directly using our approach not only improves electrolyte dispersion and facilitates catalyst utilization but also provides multidimensional electron transport channels for improving electronic conductivity. |
---|