Cargando…
Biologically informed deep learning to query gene programs in single-cell atlases
The increasing availability of large-scale single-cell atlases has enabled the detailed description of cell states. In parallel, advances in deep learning allow rapid analysis of newly generated query datasets by mapping them into reference atlases. However, existing data transformations learned to...
Autores principales: | Lotfollahi, Mohammad, Rybakov, Sergei, Hrovatin, Karin, Hediyeh-zadeh, Soroor, Talavera-López, Carlos, Misharin, Alexander V., Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928587/ https://www.ncbi.nlm.nih.gov/pubmed/36732632 http://dx.doi.org/10.1038/s41556-022-01072-x |
Ejemplares similares
-
Population-level integration of single-cell datasets enables multi-scale analysis across samples
por: De Donno, Carlo, et al.
Publicado: (2023) -
Mapping single-cell data to reference atlases by transfer learning
por: Lotfollahi, Mohammad, et al.
Publicado: (2021) -
Toward modeling metabolic state from single-cell transcriptomics
por: Hrovatin, Karin, et al.
Publicado: (2021) -
ensemblQueryR: fast, flexible and high-throughput querying of Ensembl LD API endpoints in R
por: Fairbrother-Browne, Aine, et al.
Publicado: (2023) -
MsImpute: Estimation of Missing Peptide Intensity Data in Label-Free Quantitative Mass Spectrometry
por: Hediyeh-Zadeh, Soroor, et al.
Publicado: (2023)