Cargando…
Cell quantification in digital contrast microscopy images with convolutional neural networks algorithm
High Content Screening (HCS) combines high throughput techniques with the ability to generate cellular images of biological systems. The objective of this work is to evaluate the performance of predictive models using CNN to identify the number of cells present in digital contrast microscopy images...
Autores principales: | Ferreira, E. K. G. D., Lara, D. S. D., Silveira, G. F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929078/ https://www.ncbi.nlm.nih.gov/pubmed/36788327 http://dx.doi.org/10.1038/s41598-023-29694-7 |
Ejemplares similares
-
Coffee Flower Identification Using Binarization Algorithm Based on Convolutional Neural Network for Digital Images
por: Wei, Pengliang, et al.
Publicado: (2020) -
Metaheuristic Algorithms for Convolution Neural Network
por: Rere, L. M. Rasdi, et al.
Publicado: (2016) -
A convolutional neural network segments yeast microscopy images with high accuracy
por: Dietler, Nicola, et al.
Publicado: (2020) -
Photoacoustic microscopy with sparse data by convolutional neural networks
por: Zhou, Jiasheng, et al.
Publicado: (2021) -
Deep convolutional neural network for reduction of contrast-enhanced region on CT images
por: Sumida, Iori, et al.
Publicado: (2019)