Cargando…
Multi-center retrospective cohort study applying deep learning to electrocardiograms to identify left heart valvular dysfunction
BACKGROUND: Aortic Stenosis and Mitral Regurgitation are common valvular conditions representing a hidden burden of disease within the population. The aim of this study was to develop and validate deep learning-based screening and diagnostic tools that can help guide clinical decision making. METHOD...
Autores principales: | Vaid, Akhil, Argulian, Edgar, Lerakis, Stamatios, Beaulieu-Jones, Brett K., Krittanawong, Chayakrit, Klang, Eyal, Lampert, Joshua, Reddy, Vivek Y., Narula, Jagat, Nadkarni, Girish N., Glicksberg, Benjamin S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929085/ https://www.ncbi.nlm.nih.gov/pubmed/36788316 http://dx.doi.org/10.1038/s43856-023-00240-w |
Ejemplares similares
-
A foundational vision transformer improves diagnostic performance for electrocardiograms
por: Vaid, Akhil, et al.
Publicado: (2023) -
Deep learning and the electrocardiogram: review of the current state-of-the-art
por: Somani, Sulaiman, et al.
Publicado: (2021) -
Deep Learning for Echocardiography: Introduction for Clinicians and Future Vision: State-of-the-Art Review
por: Krittanawong, Chayakrit, et al.
Publicado: (2023) -
Impact of COVID-19 Pandemic on the Role of Cardiac Sonographers
por: Garg, Vaani P., et al.
Publicado: (2021) -
Quantitative prediction of right ventricular and size and function from the electrocardiogram
por: Duong, Son Q., et al.
Publicado: (2023)