Cargando…
Deep learning based atomic defect detection framework for two-dimensional materials
Defects to popular two-dimensional (2D) transition metal dichalcogenides (TMDs) seriously lower the efficiency of field-effect transistor (FET) and depress the development of 2D materials. These atomic defects are mainly identified and researched by scanning tunneling microscope (STM) because it can...
Autores principales: | Chen, Fu-Xiang Rikudo, Lin, Chia-Yu, Siao, Hui-Ying, Jian, Cheng-Yuan, Yang, Yong-Cheng, Lin, Chun-Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929095/ https://www.ncbi.nlm.nih.gov/pubmed/36788235 http://dx.doi.org/10.1038/s41597-023-02004-6 |
Ejemplares similares
-
A materials data framework and dataset for elastomeric foam impact mitigating materials
por: Landauer, Alexander K., et al.
Publicado: (2023) -
Materials informatics platform with three dimensional structures, workflow and thermoelectric applications
por: Yao, Mingjia, et al.
Publicado: (2021) -
Machine-learned and codified synthesis parameters of oxide materials
por: Kim, Edward, et al.
Publicado: (2017) -
A comprehensive data set of physical and human-dimensional attributes for China’s lake basins
por: Chen, Tan, et al.
Publicado: (2022) -
Annotated dataset for deep-learning-based bacterial colony detection
por: Makrai, László, et al.
Publicado: (2023)