Cargando…
Intelligent ground vibration prediction in surface mines using an efficient soft computing method based on field data
Ground vibration induced by blasting operations is considered one of the most common environmental effects of mining projects. A strong ground vibration can destroy buildings and structures, hence its prediction and minimization are of high importance. The aim of this study is to estimate the ground...
Autores principales: | Keshtegar, Behrooz, Piri, Jamshid, Asnida Abdullah, Rini, Hasanipanah, Mahdi, Muayad Sabri Sabri, Mohanad, Nguyen Le, Binh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929182/ https://www.ncbi.nlm.nih.gov/pubmed/36817184 http://dx.doi.org/10.3389/fpubh.2022.1094771 |
Ejemplares similares
-
Prediction of ground vibration due to mine blasting in a surface lead–zinc mine using machine learning ensemble techniques
por: Hosseini, Shahab, et al.
Publicado: (2023) -
Application of KNN-based isometric mapping and fuzzy c-means algorithm to predict short-term rockburst risk in deep underground projects
por: Kamran, Muhammad, et al.
Publicado: (2022) -
Intelligent Design of Building Materials: Development of an AI-Based Method for Cement-Slag Concrete Design
por: Zhu, Fei, et al.
Publicado: (2022) -
Intelligent Design of Construction Materials: A Comparative Study of AI Approaches for Predicting the Strength of Concrete with Blast Furnace Slag
por: Wu, Xiangping, et al.
Publicado: (2022) -
The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength
por: Barkhordari, Mohammad Sadegh, et al.
Publicado: (2022)