Cargando…
A small-dataset-trained deep learning framework for identifying atoms on transmission electron microscopy images
To accurately identify atoms on noisy transmission electron microscope images, a deep learning (DL) approach is employed to estimate the map of probabilities at each pixel for being an atom with element discernment. Thanks to a delicately-designed loss function and the ability to extract features, t...
Autores principales: | Chen, Yuan, Liu, Shangpeng, Tong, Peiran, Huang, Ying, Tian, He, Lin, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929221/ https://www.ncbi.nlm.nih.gov/pubmed/36788257 http://dx.doi.org/10.1038/s41598-023-29606-9 |
Ejemplares similares
-
Identifying and manipulating single atoms with scanning transmission electron microscopy
por: Susi, Toma
Publicado: (2022) -
Deep learning strategy for small dataset from atomic force microscopy mechano-imaging on macrophages phenotypes
por: Wu, Hao, et al.
Publicado: (2023) -
Chromium carbide micro-whiskers dataset: Morphologies with scanning and transmission electronic microscopy
por: Zhai, Chenxi, et al.
Publicado: (2020) -
Fluorescence microscopy datasets for training deep neural networks
por: Hagen, Guy M, et al.
Publicado: (2021) -
Nanomaterial datasets to advance tomography in scanning transmission electron microscopy
por: Levin, Barnaby D.A., et al.
Publicado: (2016)