Cargando…

Peristaltic pumping of Boron Nitride-Ethylene Glycol nanofluid through a complex wavy micro-channel under the effect of induced magnetic field and double diffusive

The main objective of this work is to present a comprehensive study that scrutinize the influence of DD convection and induced magnetic field on peristaltic pumping of Boron Nitride—Ethylene Glycol nanofluid flow through a vertical complex irregular microchannel. Experimental study showed that the n...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussein, Sameh A., Eldabe, Nabil T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929341/
https://www.ncbi.nlm.nih.gov/pubmed/36788292
http://dx.doi.org/10.1038/s41598-023-29301-9
Descripción
Sumario:The main objective of this work is to present a comprehensive study that scrutinize the influence of DD convection and induced magnetic field on peristaltic pumping of Boron Nitride—Ethylene Glycol nanofluid flow through a vertical complex irregular microchannel. Experimental study showed that the nanofluid created by suspending Boron Nitride particles in a combination of Ethylene Glycol exhibited non-Newtonian characteristics. Further, the Carreau's fluid model provides accurate predictions about the rheological properties of BN-EG nanofluid. In order to imitate complicated peristaltic wave propagation conditions, sophisticated waveforms are forced at the walls. The essential properties of Brownian motion and thermophoresis phenomena are also included in simulating of heat equation as well as viscous dissipation. Mathematical simulation is performed by utilizing the lubrication approach. The resulting nonlinear coupled differential equation system is solved numerically using the built-in command (ND Solve function) in the Mathematica program. Numerical and pictorial evidence is used to illustrate the importance of various physiological features of flow quantities. The major findings demonstrated that the thermal resistance is observed to rise as the Soret and Dufour numbers increase, while the dissolvent concentration and nanoparticles volume fraction have the opposite effect.