Cargando…

Improved image quality in transcatheter aortic valve implantation planning CT using deep learning-based image reconstruction

BACKGROUND: This study aims to evaluate the impact of a novel deep learning-based image reconstruction (DLIR) algorithm on the image quality in computed tomographic angiography (CTA) for pre-interventional planning of transcatheter aortic valve implantation (TAVI). METHODS: We analyzed 50 consecutiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Heinrich, Andra, Yücel, Seyrani, Böttcher, Benjamin, Öner, Alper, Manzke, Mathias, Klemenz, Ann-Christin, Weber, Marc-André, Meinel, Felix G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929406/
https://www.ncbi.nlm.nih.gov/pubmed/36819291
http://dx.doi.org/10.21037/qims-22-639
Descripción
Sumario:BACKGROUND: This study aims to evaluate the impact of a novel deep learning-based image reconstruction (DLIR) algorithm on the image quality in computed tomographic angiography (CTA) for pre-interventional planning of transcatheter aortic valve implantation (TAVI). METHODS: We analyzed 50 consecutive patients (median age 80 years, 25 men) who underwent TAVI planning CT on a 256-dectector-row CT. Images were reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) and DLIR. Intravascular image noise, edge sharpness, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantified for ascending aorta, descending aorta, abdominal aorta and iliac arteries. Two readers (one radiologist and one interventional cardiologist) scored task-specific subjective image quality on a five-point scale. RESULTS: DLIR significantly reduced median image noise by 29–57% at all anatomical locations (all P<0.001). Accordingly, median SNR improved by 44–133% (all P<0.001) and median CNR improved by 44–125% (all P<0.001). DLIR significantly improved subjective image quality for all four pre-specified TAVI-specific tasks (measuring the annulus, assessing valve morphology and calcifications, the coronary ostia, and the suitability of the aorto-iliac access route) for both the radiologist and the interventional cardiologist (P≤0.001). Measurements of the aortic annulus circumference, area and diameter did not differ between ASIR-V and DLIR reconstructions (all P>0.05). CONCLUSIONS: DLIR significantly improves objective and subjective image quality in TAVI planning CT compared to a state-of-the-art iterative reconstruction without affecting measurements of the aortic annulus. This may provide an opportunity for further reductions in contrast medium volume in this population.