Cargando…
Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction
BACKGROUND: Multi-energy computed tomography (CT) provides multiple channel-wise reconstructed images, and they can be used for material identification and k-edge imaging. Nonetheless, the projection datasets are frequently corrupted by various noises (e.g., electronic, Poisson) in the acquisition p...
Autores principales: | Wang, Shaoyu, Wu, Weiwen, Cai, Ailong, Xu, Yongshun, Vardhanabhuti, Varut, Liu, Fenglin, Yu, Hengyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929415/ https://www.ncbi.nlm.nih.gov/pubmed/36819292 http://dx.doi.org/10.21037/qims-22-235 |
Ejemplares similares
-
Refined Locally Linear Transform-Based Spectral-Domain Gradient Sparsity and Its Applications in Spectral CT Reconstruction
por: WANG, QIAN, et al.
Publicado: (2021) -
Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimental results
por: Wu, Weiwen, et al.
Publicado: (2022) -
Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks
por: Wu, Weiwen, et al.
Publicado: (2022) -
SART-Type Image Reconstruction from a Limited Number of Projections with the Sparsity Constraint
por: Yu, Hengyong, et al.
Publicado: (2010) -
Sparsity based denoising of spectral domain optical coherence tomography images
por: Fang, Leyuan, et al.
Publicado: (2012)