Cargando…

Symplectic encoders for physics-constrained variational dynamics inference

We propose a new variational autoencoder (VAE) with physical constraints capable of learning the dynamics of Multiple Degree of Freedom (MDOF) dynamic systems. Standard variational autoencoders place greater emphasis on compression than interpretability regarding the learned latent space. We propose...

Descripción completa

Detalles Bibliográficos
Autores principales: Bacsa, Kiran, Lai, Zhilu, Liu, Wei, Todd, Michael, Chatzi, Eleni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929450/
https://www.ncbi.nlm.nih.gov/pubmed/36788325
http://dx.doi.org/10.1038/s41598-023-29186-8
Descripción
Sumario:We propose a new variational autoencoder (VAE) with physical constraints capable of learning the dynamics of Multiple Degree of Freedom (MDOF) dynamic systems. Standard variational autoencoders place greater emphasis on compression than interpretability regarding the learned latent space. We propose a new type of encoder, based on the recently developed Hamiltonian Neural Networks, to impose symplectic constraints on the inferred a posteriori distribution. In addition to delivering robust trajectory predictions under noisy conditions, our model is capable of learning an energy-preserving latent representation of the system. This offers new perspectives for the application of physics-informed neural networks on engineering problems linked to dynamics.