Cargando…
Symplectic encoders for physics-constrained variational dynamics inference
We propose a new variational autoencoder (VAE) with physical constraints capable of learning the dynamics of Multiple Degree of Freedom (MDOF) dynamic systems. Standard variational autoencoders place greater emphasis on compression than interpretability regarding the learned latent space. We propose...
Autores principales: | Bacsa, Kiran, Lai, Zhilu, Liu, Wei, Todd, Michael, Chatzi, Eleni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929450/ https://www.ncbi.nlm.nih.gov/pubmed/36788325 http://dx.doi.org/10.1038/s41598-023-29186-8 |
Ejemplares similares
-
Structure of dynamical systems: a symplectic view of physics
por: Souriau, Jean-Marie
Publicado: (1997) -
Symplectic Invariants and Hamiltonian Dynamics
por: Hofer, Helmut, et al.
Publicado: (2011) -
Symplectic invariants and Hamiltonian dynamics
por: Hofer, Helmut, et al.
Publicado: (1994) -
Nonlinear dynamical systems of mathematical physics: spectral and symplectic integrability analysis
por: Blackmore, Denis, et al.
Publicado: (2011) -
Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology & Symplectic Geometry, Noncommutative Geometry and Physics
por: Eguchi, Tohru, et al.
Publicado: (2014)