Cargando…

Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu

Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated bi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zeqian, Qi, Xuanyu, Bao, Minyue, Zhou, Tian, Shi, Junfeng, Xu, Zhiyan, Zhou, Mingliang, Boccaccini, Aldo R., Zheng, Kai, Jiang, Xinquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929491/
https://www.ncbi.nlm.nih.gov/pubmed/36817824
http://dx.doi.org/10.1016/j.bioactmat.2023.01.024
_version_ 1784888868415209472
author Xu, Zeqian
Qi, Xuanyu
Bao, Minyue
Zhou, Tian
Shi, Junfeng
Xu, Zhiyan
Zhou, Mingliang
Boccaccini, Aldo R.
Zheng, Kai
Jiang, Xinquan
author_facet Xu, Zeqian
Qi, Xuanyu
Bao, Minyue
Zhou, Tian
Shi, Junfeng
Xu, Zhiyan
Zhou, Mingliang
Boccaccini, Aldo R.
Zheng, Kai
Jiang, Xinquan
author_sort Xu, Zeqian
collection PubMed
description Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated biomineralization severely impairs bone regeneration efficiency. Aiming to “remodel” the pathologic diabetic micromilieu, we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles (Sr-MBGNs) and gelatin methacrylate (GelMA). Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr, Ca, and Si ions enhancing osteogenic, angiogenic, and immunomodulatory properties. In addition to angiogenic and anti-inflammatory outcomes, this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen, promoting cell focal adhesion, modulating osteoblast differentiation, and boosting the release of OCN, the noncollagenous proteins (intrafibrillar mineralization dependent), and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis. This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the “barren” diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM.
format Online
Article
Text
id pubmed-9929491
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-99294912023-02-16 Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu Xu, Zeqian Qi, Xuanyu Bao, Minyue Zhou, Tian Shi, Junfeng Xu, Zhiyan Zhou, Mingliang Boccaccini, Aldo R. Zheng, Kai Jiang, Xinquan Bioact Mater Article Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated biomineralization severely impairs bone regeneration efficiency. Aiming to “remodel” the pathologic diabetic micromilieu, we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles (Sr-MBGNs) and gelatin methacrylate (GelMA). Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr, Ca, and Si ions enhancing osteogenic, angiogenic, and immunomodulatory properties. In addition to angiogenic and anti-inflammatory outcomes, this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen, promoting cell focal adhesion, modulating osteoblast differentiation, and boosting the release of OCN, the noncollagenous proteins (intrafibrillar mineralization dependent), and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis. This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the “barren” diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM. KeAi Publishing 2023-02-08 /pmc/articles/PMC9929491/ /pubmed/36817824 http://dx.doi.org/10.1016/j.bioactmat.2023.01.024 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Xu, Zeqian
Qi, Xuanyu
Bao, Minyue
Zhou, Tian
Shi, Junfeng
Xu, Zhiyan
Zhou, Mingliang
Boccaccini, Aldo R.
Zheng, Kai
Jiang, Xinquan
Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
title Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
title_full Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
title_fullStr Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
title_full_unstemmed Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
title_short Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
title_sort biomineralization inspired 3d printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929491/
https://www.ncbi.nlm.nih.gov/pubmed/36817824
http://dx.doi.org/10.1016/j.bioactmat.2023.01.024
work_keys_str_mv AT xuzeqian biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT qixuanyu biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT baominyue biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT zhoutian biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT shijunfeng biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT xuzhiyan biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT zhoumingliang biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT boccaccinialdor biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT zhengkai biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu
AT jiangxinquan biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu