Cargando…
Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu
Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated bi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929491/ https://www.ncbi.nlm.nih.gov/pubmed/36817824 http://dx.doi.org/10.1016/j.bioactmat.2023.01.024 |
_version_ | 1784888868415209472 |
---|---|
author | Xu, Zeqian Qi, Xuanyu Bao, Minyue Zhou, Tian Shi, Junfeng Xu, Zhiyan Zhou, Mingliang Boccaccini, Aldo R. Zheng, Kai Jiang, Xinquan |
author_facet | Xu, Zeqian Qi, Xuanyu Bao, Minyue Zhou, Tian Shi, Junfeng Xu, Zhiyan Zhou, Mingliang Boccaccini, Aldo R. Zheng, Kai Jiang, Xinquan |
author_sort | Xu, Zeqian |
collection | PubMed |
description | Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated biomineralization severely impairs bone regeneration efficiency. Aiming to “remodel” the pathologic diabetic micromilieu, we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles (Sr-MBGNs) and gelatin methacrylate (GelMA). Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr, Ca, and Si ions enhancing osteogenic, angiogenic, and immunomodulatory properties. In addition to angiogenic and anti-inflammatory outcomes, this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen, promoting cell focal adhesion, modulating osteoblast differentiation, and boosting the release of OCN, the noncollagenous proteins (intrafibrillar mineralization dependent), and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis. This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the “barren” diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM. |
format | Online Article Text |
id | pubmed-9929491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-99294912023-02-16 Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu Xu, Zeqian Qi, Xuanyu Bao, Minyue Zhou, Tian Shi, Junfeng Xu, Zhiyan Zhou, Mingliang Boccaccini, Aldo R. Zheng, Kai Jiang, Xinquan Bioact Mater Article Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated biomineralization severely impairs bone regeneration efficiency. Aiming to “remodel” the pathologic diabetic micromilieu, we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles (Sr-MBGNs) and gelatin methacrylate (GelMA). Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr, Ca, and Si ions enhancing osteogenic, angiogenic, and immunomodulatory properties. In addition to angiogenic and anti-inflammatory outcomes, this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen, promoting cell focal adhesion, modulating osteoblast differentiation, and boosting the release of OCN, the noncollagenous proteins (intrafibrillar mineralization dependent), and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis. This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the “barren” diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM. KeAi Publishing 2023-02-08 /pmc/articles/PMC9929491/ /pubmed/36817824 http://dx.doi.org/10.1016/j.bioactmat.2023.01.024 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Xu, Zeqian Qi, Xuanyu Bao, Minyue Zhou, Tian Shi, Junfeng Xu, Zhiyan Zhou, Mingliang Boccaccini, Aldo R. Zheng, Kai Jiang, Xinquan Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu |
title | Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu |
title_full | Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu |
title_fullStr | Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu |
title_full_unstemmed | Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu |
title_short | Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu |
title_sort | biomineralization inspired 3d printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929491/ https://www.ncbi.nlm.nih.gov/pubmed/36817824 http://dx.doi.org/10.1016/j.bioactmat.2023.01.024 |
work_keys_str_mv | AT xuzeqian biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT qixuanyu biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT baominyue biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT zhoutian biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT shijunfeng biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT xuzhiyan biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT zhoumingliang biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT boccaccinialdor biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT zhengkai biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu AT jiangxinquan biomineralizationinspired3dprintedbioactiveglassnanocompositescaffoldsorchestratediabeticboneregenerationbyremodelingmicromilieu |