Cargando…
Improving the adversarial transferability with relational graphs ensemble adversarial attack
In transferable black-box attacks, adversarial samples remain adversarial across multiple models and are more likely to attack unknown models. From this view, acquiring and exploiting multiple models is the key to improving transferability. For exploiting multiple models, existing approaches concent...
Autores principales: | Pi, Jiatian, Luo, Chaoyang, Xia, Fen, Jiang, Ning, Wu, Haiying, Wu, Zhiyou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929554/ https://www.ncbi.nlm.nih.gov/pubmed/36817095 http://dx.doi.org/10.3389/fnins.2022.1094795 |
Ejemplares similares
-
Image classification adversarial attack with improved resizing transformation and ensemble models
por: Li, Chenwei, et al.
Publicado: (2023) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
A Lightweight Method for Defense Graph Neural Networks Adversarial Attacks
por: Qiao, Zhi, et al.
Publicado: (2022) -
Derivative-free optimization adversarial attacks for graph convolutional networks
por: Yang, Runze, et al.
Publicado: (2021) -
ELAA: An Ensemble-Learning-Based Adversarial Attack Targeting Image-Classification Model
por: Fu, Zhongwang, et al.
Publicado: (2023)