Cargando…
An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties
With dihydromyricetin (DMY)/high-amylose corn starch (HCS) composite particles as the emulsifier, Pickering nano-emulsions were fabricated by combining high-speed shearing and high-pressure homogenization. The effect of particle properties and processing conditions on the formation and physicochemic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929674/ https://www.ncbi.nlm.nih.gov/pubmed/36815998 http://dx.doi.org/10.1016/j.crfs.2023.100458 |
_version_ | 1784888907225104384 |
---|---|
author | Geng, Sheng Yuan, Yuan Jiang, Xinying Zhang, Ruhua Ma, Hanjun Liang, Guizhao Liu, Benguo |
author_facet | Geng, Sheng Yuan, Yuan Jiang, Xinying Zhang, Ruhua Ma, Hanjun Liang, Guizhao Liu, Benguo |
author_sort | Geng, Sheng |
collection | PubMed |
description | With dihydromyricetin (DMY)/high-amylose corn starch (HCS) composite particles as the emulsifier, Pickering nano-emulsions were fabricated by combining high-speed shearing and high-pressure homogenization. The effect of particle properties and processing conditions on the formation and physicochemical properties of the Pickering nano-emulsions was then investigated systematically. The results showed that the DMY content of the composite particles, the oil phase volume fraction of the emulsion, and the homogenization conditions had obvious effects on the droplet size of the emulsion, where appropriate DMY content in the composite particles (5–20%) contributed to the formation of stable Pickering nano-emulsions. The oil phase of the obtained emulsions exhibited good stability during high-temperature storage, and their β-carotene protecting performance against UV irradiation was superior to the emulsion stabilized by Tween 20. The in vitro simulated digestion analysis indicated that the nano-emulsions developed by the composite particles could enhance the bioaccessibility of β-carotene and inhibit starch hydrolysis. |
format | Online Article Text |
id | pubmed-9929674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99296742023-02-16 An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties Geng, Sheng Yuan, Yuan Jiang, Xinying Zhang, Ruhua Ma, Hanjun Liang, Guizhao Liu, Benguo Curr Res Food Sci Research Article With dihydromyricetin (DMY)/high-amylose corn starch (HCS) composite particles as the emulsifier, Pickering nano-emulsions were fabricated by combining high-speed shearing and high-pressure homogenization. The effect of particle properties and processing conditions on the formation and physicochemical properties of the Pickering nano-emulsions was then investigated systematically. The results showed that the DMY content of the composite particles, the oil phase volume fraction of the emulsion, and the homogenization conditions had obvious effects on the droplet size of the emulsion, where appropriate DMY content in the composite particles (5–20%) contributed to the formation of stable Pickering nano-emulsions. The oil phase of the obtained emulsions exhibited good stability during high-temperature storage, and their β-carotene protecting performance against UV irradiation was superior to the emulsion stabilized by Tween 20. The in vitro simulated digestion analysis indicated that the nano-emulsions developed by the composite particles could enhance the bioaccessibility of β-carotene and inhibit starch hydrolysis. Elsevier 2023-02-07 /pmc/articles/PMC9929674/ /pubmed/36815998 http://dx.doi.org/10.1016/j.crfs.2023.100458 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Geng, Sheng Yuan, Yuan Jiang, Xinying Zhang, Ruhua Ma, Hanjun Liang, Guizhao Liu, Benguo An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties |
title | An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties |
title_full | An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties |
title_fullStr | An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties |
title_full_unstemmed | An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties |
title_short | An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties |
title_sort | investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: preparation conditions and carrier properties |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929674/ https://www.ncbi.nlm.nih.gov/pubmed/36815998 http://dx.doi.org/10.1016/j.crfs.2023.100458 |
work_keys_str_mv | AT gengsheng aninvestigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT yuanyuan aninvestigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT jiangxinying aninvestigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT zhangruhua aninvestigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT mahanjun aninvestigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT liangguizhao aninvestigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT liubenguo aninvestigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT gengsheng investigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT yuanyuan investigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT jiangxinying investigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT zhangruhua investigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT mahanjun investigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT liangguizhao investigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties AT liubenguo investigationonpickeringnanoemulsionsstabilizedbydihydromyricetinhighamylosecornstarchcompositeparticlespreparationconditionsandcarrierproperties |