Cargando…

AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase

Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple‐drug resistant bacteria. He...

Descripción completa

Detalles Bibliográficos
Autores principales: Jasilionis, Andrius, Plotka, Magdalena, Wang, Lei, Dorawa, Sebastian, Lange, Joanna, Watzlawick, Hildegard, van den Bergh, Tom, Vroling, Bas, Altenbuchner, Josef, Kaczorowska, Anna‐Karina, Pohl, Ehmke, Kaczorowski, Tadeusz, Nordberg Karlsson, Eva, Freitag‐Pohl, Stefanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929850/
https://www.ncbi.nlm.nih.gov/pubmed/36721347
http://dx.doi.org/10.1002/pro.4585
_version_ 1784888948902854656
author Jasilionis, Andrius
Plotka, Magdalena
Wang, Lei
Dorawa, Sebastian
Lange, Joanna
Watzlawick, Hildegard
van den Bergh, Tom
Vroling, Bas
Altenbuchner, Josef
Kaczorowska, Anna‐Karina
Pohl, Ehmke
Kaczorowski, Tadeusz
Nordberg Karlsson, Eva
Freitag‐Pohl, Stefanie
author_facet Jasilionis, Andrius
Plotka, Magdalena
Wang, Lei
Dorawa, Sebastian
Lange, Joanna
Watzlawick, Hildegard
van den Bergh, Tom
Vroling, Bas
Altenbuchner, Josef
Kaczorowska, Anna‐Karina
Pohl, Ehmke
Kaczorowski, Tadeusz
Nordberg Karlsson, Eva
Freitag‐Pohl, Stefanie
author_sort Jasilionis, Andrius
collection PubMed
description Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple‐drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/β‐fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn‐type or DAP‐type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature T (m) 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.
format Online
Article
Text
id pubmed-9929850
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-99298502023-02-16 AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase Jasilionis, Andrius Plotka, Magdalena Wang, Lei Dorawa, Sebastian Lange, Joanna Watzlawick, Hildegard van den Bergh, Tom Vroling, Bas Altenbuchner, Josef Kaczorowska, Anna‐Karina Pohl, Ehmke Kaczorowski, Tadeusz Nordberg Karlsson, Eva Freitag‐Pohl, Stefanie Protein Sci Full‐length Papers Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple‐drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/β‐fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn‐type or DAP‐type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature T (m) 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology. John Wiley & Sons, Inc. 2023-02-15 /pmc/articles/PMC9929850/ /pubmed/36721347 http://dx.doi.org/10.1002/pro.4585 Text en © 2023 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full‐length Papers
Jasilionis, Andrius
Plotka, Magdalena
Wang, Lei
Dorawa, Sebastian
Lange, Joanna
Watzlawick, Hildegard
van den Bergh, Tom
Vroling, Bas
Altenbuchner, Josef
Kaczorowska, Anna‐Karina
Pohl, Ehmke
Kaczorowski, Tadeusz
Nordberg Karlsson, Eva
Freitag‐Pohl, Stefanie
AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase
title AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase
title_full AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase
title_fullStr AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase
title_full_unstemmed AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase
title_short AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase
title_sort amip from hyperthermophilic thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase
topic Full‐length Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929850/
https://www.ncbi.nlm.nih.gov/pubmed/36721347
http://dx.doi.org/10.1002/pro.4585
work_keys_str_mv AT jasilionisandrius amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT plotkamagdalena amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT wanglei amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT dorawasebastian amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT langejoanna amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT watzlawickhildegard amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT vandenberghtom amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT vrolingbas amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT altenbuchnerjosef amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT kaczorowskaannakarina amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT pohlehmke amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT kaczorowskitadeusz amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT nordbergkarlssoneva amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase
AT freitagpohlstefanie amipfromhyperthermophilicthermusparvatiensisprophageisathermoactiveandultrathermostablepeptidoglycanlyticamidase