Cargando…
Dimensional study of COVID-19 via fractal functions
The present paper deals with the modeling of the COVID-19 via fractal interpolation function (FIF) and the estimation of the dimension of constructed FIF. Further, we determine the adjoint of the fractal operator defined on [Formula: see text] space associated with the FIF.
Autores principales: | Agrawal, Ekta, Verma, Saurabh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930014/ https://www.ncbi.nlm.nih.gov/pubmed/36816509 http://dx.doi.org/10.1140/epjs/s11734-023-00774-z |
Ejemplares similares
-
Local [Formula: see text] -fractal interpolation function
por: Banerjee, Akash, et al.
Publicado: (2023) -
Fractal dimension analysis of stock prices of selected resulting companies after mergers and acquisitions
por: Verma, Shubham Kumar, et al.
Publicado: (2023) -
Numerical integration of bivariate fractal interpolation functions on rectangular domains
por: Aparna, M. P., et al.
Publicado: (2023) -
Fractal zeta functions and fractal drums: higher-dimensional theory of complex dimensions
por: Lapidus, Michel L, et al.
Publicado: (2017) -
Generalized fractal dimensions based comparison analysis of edge detection methods in CT images for estimating the infection of COVID-19 disease
por: Thangaraj, C., et al.
Publicado: (2022)