Cargando…
Towards Automated Optimization of Residual Convolutional Neural Networks for Electrocardiogram Classification
The interpretation of biological data such as the ElectroCardioGram (ECG) signal gives clinical information and helps to assess the heart function. There are distinct ECG patterns associated with a specific class of arrhythmia. The convolutional neural network, inspired by findings in the study of b...
Autores principales: | Fki, Zeineb, Ammar, Boudour, Ayed, Mounir Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930020/ https://www.ncbi.nlm.nih.gov/pubmed/36819737 http://dx.doi.org/10.1007/s12559-022-10103-6 |
Ejemplares similares
-
Convolutional neural network optimized by differential evolution for electrocardiogram classification
por: Chen, Shan Wei, et al.
Publicado: (2023) -
Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification
por: He, Xinxin, et al.
Publicado: (2023) -
Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network
por: Ji, Yinsheng, et al.
Publicado: (2019) -
Robustness of convolutional neural networks to physiological electrocardiogram noise
por: Venton, J., et al.
Publicado: (2021) -
Convolutional neural network for automated mass segmentation in mammography
por: Abdelhafiz, Dina, et al.
Publicado: (2020)