Cargando…
Pumping up the volume
The time and cost of annotating ground-truth images and network training are major challenges to utilizing machine learning to automate the mining of volume electron microscopy data. In this issue, Gallusser et al. (2023. J. Cell Biol. https://doi.org/10.1083/jcb.202208005) present a less computatio...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930139/ https://www.ncbi.nlm.nih.gov/pubmed/36696087 http://dx.doi.org/10.1083/jcb.202212042 |
Sumario: | The time and cost of annotating ground-truth images and network training are major challenges to utilizing machine learning to automate the mining of volume electron microscopy data. In this issue, Gallusser et al. (2023. J. Cell Biol. https://doi.org/10.1083/jcb.202208005) present a less computationally intense pipeline to detect a single type of organelle using a limited number of loosely annotated images. |
---|