Cargando…
Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding
The life cycle of plastic is a key source of carbon emissions. Yet, global plastics production has quadrupled in 40 years and only 9 % has been recycled. If these trends continue, carbon emissions from plastic wastes would reach 15 % of global carbon budgets by 2050. An approach to reducing plastic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930197/ https://www.ncbi.nlm.nih.gov/pubmed/36818952 http://dx.doi.org/10.1016/j.ohx.2023.e00401 |
_version_ | 1784889003196022784 |
---|---|
author | Rattan, Ravneet S. Nauta, Nathan Romani, Alessia Pearce, Joshua M. |
author_facet | Rattan, Ravneet S. Nauta, Nathan Romani, Alessia Pearce, Joshua M. |
author_sort | Rattan, Ravneet S. |
collection | PubMed |
description | The life cycle of plastic is a key source of carbon emissions. Yet, global plastics production has quadrupled in 40 years and only 9 % has been recycled. If these trends continue, carbon emissions from plastic wastes would reach 15 % of global carbon budgets by 2050. An approach to reducing plastic waste is to use distributed recycling for additive manufacturing (DRAM) where virgin plastic products are replaced by locally manufactured recycled plastic products that have no transportation-related carbon emissions. Unfortunately, the design of most 3-D printers forces an increase in the machine cost to expand for recycling plastic at scale. Recently, a fused granular fabrication (FGF)/fused particle fabrication (FPF) large-scale printer was demonstrated with a GigabotX extruder based on the open source cable driven Hangprinter concept. To further improve that system, here a lower-cost recyclebot direct waste plastic extruder is demonstrated and the full designs, assembly and operation are detailed. The <$1,700 machine’s accuracy and printing performance are quantified, and the printed parts mechanical strength is within the range of other systems. Along with support from the Hangprinter and DUET3 communities, open hardware developers have a rich ecosystem to modify in order to print directly from waste plastic for DRAM. |
format | Online Article Text |
id | pubmed-9930197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99301972023-02-16 Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding Rattan, Ravneet S. Nauta, Nathan Romani, Alessia Pearce, Joshua M. HardwareX Article The life cycle of plastic is a key source of carbon emissions. Yet, global plastics production has quadrupled in 40 years and only 9 % has been recycled. If these trends continue, carbon emissions from plastic wastes would reach 15 % of global carbon budgets by 2050. An approach to reducing plastic waste is to use distributed recycling for additive manufacturing (DRAM) where virgin plastic products are replaced by locally manufactured recycled plastic products that have no transportation-related carbon emissions. Unfortunately, the design of most 3-D printers forces an increase in the machine cost to expand for recycling plastic at scale. Recently, a fused granular fabrication (FGF)/fused particle fabrication (FPF) large-scale printer was demonstrated with a GigabotX extruder based on the open source cable driven Hangprinter concept. To further improve that system, here a lower-cost recyclebot direct waste plastic extruder is demonstrated and the full designs, assembly and operation are detailed. The <$1,700 machine’s accuracy and printing performance are quantified, and the printed parts mechanical strength is within the range of other systems. Along with support from the Hangprinter and DUET3 communities, open hardware developers have a rich ecosystem to modify in order to print directly from waste plastic for DRAM. Elsevier 2023-02-09 /pmc/articles/PMC9930197/ /pubmed/36818952 http://dx.doi.org/10.1016/j.ohx.2023.e00401 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rattan, Ravneet S. Nauta, Nathan Romani, Alessia Pearce, Joshua M. Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding |
title | Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding |
title_full | Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding |
title_fullStr | Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding |
title_full_unstemmed | Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding |
title_short | Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding |
title_sort | hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930197/ https://www.ncbi.nlm.nih.gov/pubmed/36818952 http://dx.doi.org/10.1016/j.ohx.2023.e00401 |
work_keys_str_mv | AT rattanravneets hangprinterforlargescaleadditivemanufacturingusingfusedparticlefabricationwithrecycledplasticandcontinuousfeeding AT nautanathan hangprinterforlargescaleadditivemanufacturingusingfusedparticlefabricationwithrecycledplasticandcontinuousfeeding AT romanialessia hangprinterforlargescaleadditivemanufacturingusingfusedparticlefabricationwithrecycledplasticandcontinuousfeeding AT pearcejoshuam hangprinterforlargescaleadditivemanufacturingusingfusedparticlefabricationwithrecycledplasticandcontinuousfeeding |