Cargando…
Developing a genetic engineering method for Acetobacterium wieringae to expand one-carbon valorization pathways
BACKGROUND: Developing new bioprocesses to produce chemicals and fuels with reduced production costs will greatly facilitate the replacement of fossil-based raw materials. In most fermentation bioprocesses, the feedstock usually represents the highest cost, which becomes the target for cost reductio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930230/ https://www.ncbi.nlm.nih.gov/pubmed/36788587 http://dx.doi.org/10.1186/s13068-023-02259-6 |
Sumario: | BACKGROUND: Developing new bioprocesses to produce chemicals and fuels with reduced production costs will greatly facilitate the replacement of fossil-based raw materials. In most fermentation bioprocesses, the feedstock usually represents the highest cost, which becomes the target for cost reduction. Additionally, the biorefinery concept advocates revenue growth from the production of several compounds using the same feedstock. Taken together, the production of bio commodities from low-cost gas streams containing CO, CO(2), and H(2), obtained from the gasification of any carbon-containing waste streams or off-gases from heavy industry (steel mills, processing plants, or refineries), embodies an opportunity for affordable and renewable chemical production. To achieve this, by studying non-model autotrophic acetogens, current limitations concerning low growth rates, toxicity by gas streams, and low productivity may be overcome. The Acetobacterium wieringae strain JM is a novel autotrophic acetogen that is capable of producing acetate and ethanol. It exhibits faster growth rates on various gaseous compounds, including carbon monoxide, compared to other Acetobacterium species, making it potentially useful for industrial applications. The species A. wieringae has not been genetically modified, therefore developing a genetic engineering method is important for expanding its product portfolio from gas fermentation and overall improving the characteristics of this acetogen for industrial demands. RESULTS: This work reports the development and optimization of an electrotransformation protocol for A. wieringae strain JM, which can also be used in A. wieringae DSM 1911, and A. woodii DSM 1030. We also show the functionality of the thiamphenicol resistance marker, catP, and the functionality of the origins of replication pBP1, pCB102, pCD6, and pIM13 in all tested Acetobacterium strains, with transformation efficiencies of up to 2.0 × 10(3) CFU/μg(DNA). Key factors affecting electrotransformation efficiency include OD(600) of cell harvesting, pH of resuspension buffer, the field strength of the electric pulse, and plasmid amount. Using this method, the acetone production operon from Clostridium acetobutylicum was efficiently introduced in all tested Acetobacterium spp., leading to non-native biochemical acetone production via plasmid-based expression. CONCLUSIONS: A. wieringae can be electrotransformed at high efficiency using different plasmids with different replication origins. The electrotransformation procedure and tools reported here unlock the genetic and metabolic manipulation of the biotechnologically relevant A. wieringae strains. For the first time, non-native acetone production is shown in A. wieringae. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-023-02259-6. |
---|