Cargando…

Estimating disease incidence rates and transition probabilities in elderly patients using multi-state models: a case study in fragility fracture using a Bayesian approach

BACKGROUND: Multi-state models are complex stochastic models which focus on pathways defined by the temporal and sequential occurrence of numerous events of interest. In particular, the so-called illness-death models are especially useful for studying probabilities associated to diseases whose occur...

Descripción completa

Detalles Bibliográficos
Autores principales: Llopis-Cardona, Fran, Armero, Carmen, Sanfélix-Gimeno, Gabriel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9930279/
https://www.ncbi.nlm.nih.gov/pubmed/36788479
http://dx.doi.org/10.1186/s12874-023-01859-y
Descripción
Sumario:BACKGROUND: Multi-state models are complex stochastic models which focus on pathways defined by the temporal and sequential occurrence of numerous events of interest. In particular, the so-called illness-death models are especially useful for studying probabilities associated to diseases whose occurrence competes with other possible diseases, health conditions or death. They can be seen as a generalization of the competing risks models, which are widely used to estimate disease-incidences among populations with a high risk of death, such as elderly or cancer patients. The main advantage of the aforementioned illness-death models is that they allow the treatment of scenarios with non-terminal competing events that may occur sequentially, which competing risks models fail to do. METHODS: We propose an illness-death model using Cox proportional hazards models with Weibull baseline hazard functions, and applied the model to a study of recurrent hip fracture. Data came from the PREV2FO cohort and included 34491 patients aged 65 years and older who were discharged alive after a hospitalization due to an osteoporotic hip fracture between 2008-2015. We used a Bayesian approach to approximate the posterior distribution of each parameter of the model, and thus cumulative incidences and transition probabilities. We also compared these results with a competing risks specification. RESULTS: Posterior transition probabilities showed higher probabilities of death for men and increasing with age. Women were more likely to refracture as well as less likely to die after it. Free-event time was shown to reduce the probability of death. Estimations from the illness-death and the competing risks models were identical for those common transitions although the illness-death model provided additional information from the transition from refracture to death. CONCLUSIONS: We illustrated how multi-state models, in particular illness-death models, may be especially useful when dealing with survival scenarios which include multiple events, with competing diseases or when death is an unavoidable event to consider. Illness-death models via transition probabilities provide additional information of transitions from non-terminal health conditions to absorbing states such as death, what implies a deeper understanding of the real-world problem involved compared to competing risks models. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-023-01859-y.