Cargando…
Using machine learning to improve our understanding of COVID-19 infection in children
PURPOSE: Children are at elevated risk for COVID-19 (SARS-CoV-2) infection due to their social behaviors. The purpose of this study was to determine if usage of radiological chest X-rays impressions can help predict whether a young adult has COVID-19 infection or not. METHODS: A total of 2572 chest...
Autores principales: | Piparia, Shraddha, Defante, Andrew, Tantisira, Kelan, Ryu, Julie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931095/ https://www.ncbi.nlm.nih.gov/pubmed/36791067 http://dx.doi.org/10.1371/journal.pone.0281666 |
Ejemplares similares
-
Childhood infections and asthma: at the crossroads of the hygiene and Barker hypotheses
por: Tantisira, Kelan G, et al.
Publicado: (2001) -
Handover of the Editor in Chief positions – from the new Editors-in-Chief to the readership of Respiratory Research
por: Tantisira, Kelan, et al.
Publicado: (2019) -
Can Big Data and Machine Learning Improve Our Understanding of Acute Respiratory Distress Syndrome?
por: Bhattarai, Sanket, et al.
Publicado: (2021) -
Circulating MicroRNAs associated with Bronchodilator Response in Childhood Asthma
por: Sharma, Rinku, et al.
Publicado: (2023) -
Genetic Signatures of Asthma Exacerbation
por: Park, Heung-Woo, et al.
Publicado: (2017)