Cargando…
Bayesian model selection for multilevel models using integrated likelihoods
Multilevel linear models allow flexible statistical modelling of complex data with different levels of stratification. Identifying the most appropriate model from the large set of possible candidates is a challenging problem. In the Bayesian setting, the standard approach is a comparison of models u...
Autores principales: | Edinburgh, Tom, Ercole, Ari, Eglen, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931113/ https://www.ncbi.nlm.nih.gov/pubmed/36791095 http://dx.doi.org/10.1371/journal.pone.0280046 |
Ejemplares similares
-
Sepsis-3 criteria in AmsterdamUMCdb: open-source code implementation
por: Edinburgh, Tom, et al.
Publicado: (2022) -
Likelihood-free Bayesian analysis of neural network models
por: Turner, Brandon M, et al.
Publicado: (2013) -
Modeling spatial and temporal variability by Bayesian multilevel
model
por: Song, Xiaoxiao, et al.
Publicado: (2017) -
Bayesian Correction for Misclassification in Multilevel Count Data Models
por: Nelson, Tyler, et al.
Publicado: (2018) -
Evaluation of spatial Bayesian Empirical Likelihood models in analysis of small area data
por: Jahan, Farzana, et al.
Publicado: (2022)