Cargando…
An Early Miocene kentriodontoid (Cetacea: Odontoceti) from the western North Pacific, and its implications for their phylogeny and paleobiogeography
So–called ‘kentriodontids’ are extinct dolphin–like odontocetes known from the Early to Late Miocene worldwide. Although recent studies have proposed that they were monophyletic, their taxonomic relationships still remain controversial. Such a controversy exists partly because of the predominance of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931143/ https://www.ncbi.nlm.nih.gov/pubmed/36791148 http://dx.doi.org/10.1371/journal.pone.0280218 |
Sumario: | So–called ‘kentriodontids’ are extinct dolphin–like odontocetes known from the Early to Late Miocene worldwide. Although recent studies have proposed that they were monophyletic, their taxonomic relationships still remain controversial. Such a controversy exists partly because of the predominance of primitive morphologies in this taxon, but the fact is that quite a few ‘kentriodontids’ are known only from fragmentary skulls and/or isolated periotics. A new ‘kentriodontid’ Platysvercus ugonis gen. et sp. nov. is described based on a nearly complete skull from the upper Lower Miocene Sugota Formation, Akita Prefecture, northern Japan. Based on the phylogenetic analysis of P. ugonis described here, the monophyly of the ‘kentriodontids’ is confirmed, and it is recognized as the superfamily Kentriodontoidea. This new superfamily is subdivided into two families as new ranks: Kentriodontidae and Lophocetidae. Based on the paleobiogeographic analysis of the Kentriodontoidea, their common ancestor emerged in the North Pacific Ocean and spread over the Northern Hemisphere. Initial diversification of the Kentriodontidae in the North Pacific Ocean and the Lophocetidae in the North Atlantic Ocean was recognized as a vicariance event. The diversification and extinction of the Kentriodontoidea could have been synchronously influenced by climate events during the Middle Miocene. |
---|