Cargando…
DRaW: prediction of COVID-19 antivirals by deep learning—an objection on using matrix factorization
BACKGROUND: Due to the high resource consumption of introducing a new drug, drug repurposing plays an essential role in drug discovery. To do this, researchers examine the current drug-target interaction (DTI) to predict new interactions for the approved drugs. Matrix factorization methods have much...
Autores principales: | Hashemi, S. Morteza, Zabihian, Arash, Hooshmand, Mohsen, Gharaghani, Sajjad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931173/ https://www.ncbi.nlm.nih.gov/pubmed/36793010 http://dx.doi.org/10.1186/s12859-023-05181-8 |
Ejemplares similares
-
DEDTI versus IEDTI: efficient and predictive models of drug-target interactions
por: Zabihian, Arash, et al.
Publicado: (2023) -
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
por: Sajadi, Seyedeh Zahra, et al.
Publicado: (2021) -
Novel wideband circularly polarized DRA with squint-free radiation characteristics
por: Abedian, Mohammad, et al.
Publicado: (2021) -
Sverige vill dra sig ur forskningsprojekt
Publicado: (1981) -
Mutual Coupling Reduction in MIMO DRA through Metamaterials
por: Khan, Muhammad Sabir, et al.
Publicado: (2023)