Cargando…
Global healthcare fairness: We should be sharing more, not less, data
The availability of large, deidentified health datasets has enabled significant innovation in using machine learning (ML) to better understand patients and their diseases. However, questions remain regarding the true privacy of this data, patient control over their data, and how we regulate data sha...
Autores principales: | Seastedt, Kenneth P., Schwab, Patrick, O’Brien, Zach, Wakida, Edith, Herrera, Karen, Marcelo, Portia Grace F., Agha-Mir-Salim, Louis, Frigola, Xavier Borrat, Ndulue, Emily Boardman, Marcelo, Alvin, Celi, Leo Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931202/ https://www.ncbi.nlm.nih.gov/pubmed/36812599 http://dx.doi.org/10.1371/journal.pdig.0000102 |
Ejemplares similares
-
Operationalising fairness in medical algorithms
por: Parbhoo, Sonali, et al.
Publicado: (2022) -
Compassion meditators show less anger, less punishment, and more compensation of victims in response to fairness violations
por: McCall, Cade, et al.
Publicado: (2014) -
Should We Genetically Select for the Beauty Norm of Fair Skin?
por: Marway, Herjeet
Publicado: (2017) -
Digital literacy as a new determinant of health: A scoping review
por: Arias López, Maria del Pilar, et al.
Publicado: (2023) -
I Should but I Won’t: Why Young Children Endorse Norms of Fair Sharing but Do Not Follow Them
por: Smith, Craig E., et al.
Publicado: (2013)