Cargando…
Unifying cardiovascular modelling with deep reinforcement learning for uncertainty aware control of sepsis treatment
Sepsis is a potentially life-threatening inflammatory response to infection or severe tissue damage. It has a highly variable clinical course, requiring constant monitoring of the patient’s state to guide the management of intravenous fluids and vasopressors, among other interventions. Despite decad...
Autores principales: | Nanayakkara, Thesath, Clermont, Gilles, Langmead, Christopher James, Swigon, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931225/ https://www.ncbi.nlm.nih.gov/pubmed/36812511 http://dx.doi.org/10.1371/journal.pdig.0000012 |
Ejemplares similares
-
Uncertainty-aware deep learning in healthcare: A scoping review
por: Loftus, Tyler J., et al.
Publicado: (2022) -
Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty
por: Kim, MyeongSeop, et al.
Publicado: (2022) -
Sepsis Endotypes Defined By Cytokine Trajectory Analysis
por: Zhu, L, et al.
Publicado: (2015) -
A Unifying Framework for Reinforcement Learning and Planning
por: Moerland, Thomas M., et al.
Publicado: (2022) -
Reinforcement Learning with Side Information for the Uncertainties
por: Yang, Janghoon
Publicado: (2022)