Cargando…
The “Ecosystem as a Service (EaaS)” approach to advance clinical artificial intelligence (cAI)
The application of machine learning and artificial intelligence to clinical settings for prevention, diagnosis, treatment, and the improvement of clinical care have been demonstrably cost-effective. However, current clinical AI (cAI) support tools are predominantly created by non-domain experts and...
Autores principales: | Ishii-Rousseau, Julian Euma, Seino, Shion, Ebner, Daniel K., Vareth, Maryam, Po, Ming Jack, Celi, Leo Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931236/ https://www.ncbi.nlm.nih.gov/pubmed/36812508 http://dx.doi.org/10.1371/journal.pdig.0000011 |
Ejemplares similares
-
The advent of medical artificial intelligence: lessons from the Japanese approach
por: Ishii, Euma, et al.
Publicado: (2020) -
Artificial Intelligence (AI) Trust Framework and Maturity Model: Applying an Entropy Lens to Improve Security, Privacy, and Ethical AI
por: Mylrea, Michael, et al.
Publicado: (2023) -
A distributed approach to the regulation of clinical AI
por: Panch, Trishan, et al.
Publicado: (2022) -
From the EAA conference on the TME
por: Romero, Diana
Publicado: (2020) -
Addressing the “elephant in the room” of AI clinical decision support through organisation-level regulation
por: Zhang, Joe, et al.
Publicado: (2022)