Cargando…
Transfer learning for non-image data in clinical research: A scoping review
BACKGROUND: Transfer learning is a form of machine learning where a pre-trained model trained on a specific task is reused as a starting point and tailored to another task in a different dataset. While transfer learning has garnered considerable attention in medical image analysis, its use for clini...
Autores principales: | Ebbehoj, Andreas, Thunbo, Mette Østergaard, Andersen, Ole Emil, Glindtvad, Michala Vilstrup, Hulman, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931256/ https://www.ncbi.nlm.nih.gov/pubmed/36812540 http://dx.doi.org/10.1371/journal.pdig.0000014 |
Ejemplares similares
-
Large Language Models for Epidemiological Research via Automated Machine Learning: Case Study Using Data From the British National Child Development Study
por: Wibaek, Rasmus, et al.
Publicado: (2023) -
RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning
por: Mei, Xueyan, et al.
Publicado: (2022) -
Transfer Learning Approaches for Neuroimaging Analysis: A Scoping Review
por: Ardalan, Zaniar, et al.
Publicado: (2022) -
Unsupervised knowledge-transfer for learned image reconstruction
por: Barbano, Riccardo, et al.
Publicado: (2022) -
A scoping review of patient selection methods for proton therapy
por: Zientara, Nicole, et al.
Publicado: (2021)