Cargando…
A novel interpretable machine learning system to generate clinical risk scores: An application for predicting early mortality or unplanned readmission in a retrospective cohort study
Risk scores are widely used for clinical decision making and commonly generated from logistic regression models. Machine-learning-based methods may work well for identifying important predictors to create parsimonious scores, but such ‘black box’ variable selection limits interpretability, and varia...
Autores principales: | Ning, Yilin, Li, Siqi, Ong, Marcus Eng Hock, Xie, Feng, Chakraborty, Bibhas, Ting, Daniel Shu Wei, Liu, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931273/ https://www.ncbi.nlm.nih.gov/pubmed/36812536 http://dx.doi.org/10.1371/journal.pdig.0000062 |
Ejemplares similares
-
AutoScore-Ordinal: an interpretable machine learning framework for generating scoring models for ordinal outcomes
por: Saffari, Seyed Ehsan, et al.
Publicado: (2022) -
Development and validation of an interpretable machine learning scoring tool for estimating time to emergency readmissions
por: Xie, Feng, et al.
Publicado: (2022) -
Shapley variable importance cloud for interpretable machine learning
por: Ning, Yilin, et al.
Publicado: (2022) -
AutoScore: A Machine Learning–Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records
por: Xie, Feng, et al.
Publicado: (2020) -
A universal AutoScore framework to develop interpretable scoring systems for predicting common types of clinical outcomes
por: Xie, Feng, et al.
Publicado: (2023)