Cargando…
Privacy-aware multi-institutional time-to-event studies
Clinical time-to-event studies are dependent on large sample sizes, often not available at a single institution. However, this is countered by the fact that, particularly in the medical field, individual institutions are often legally unable to share their data, as medical data is subject to strong...
Autores principales: | Späth, Julian, Matschinske, Julian, Kamanu, Frederick K., Murphy, Sabina A., Zolotareva, Olga, Bakhtiari, Mohammad, Antman, Elliott M., Loscalzo, Joseph, Brauneck, Alissa, Schmalhorst, Louisa, Buchholtz, Gabriele, Baumbach, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931301/ https://www.ncbi.nlm.nih.gov/pubmed/36812603 http://dx.doi.org/10.1371/journal.pdig.0000101 |
Ejemplares similares
-
Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review
por: Brauneck, Alissa, et al.
Publicado: (2023) -
Flimma: a federated and privacy-aware tool for differential gene expression analysis
por: Zolotareva, Olga, et al.
Publicado: (2021) -
Privacy-Preserving Artificial Intelligence Techniques in Biomedicine
por: Torkzadehmahani, Reihaneh, et al.
Publicado: (2022) -
dsMTL: a computational framework for privacy-preserving, distributed multi-task machine learning
por: Cao, Han, et al.
Publicado: (2022) -
sPLINK: a hybrid federated tool as a robust alternative to meta-analysis in genome-wide association studies
por: Nasirigerdeh, Reza, et al.
Publicado: (2022)