Cargando…

A proteomic survival predictor for COVID-19 patients in intensive care

Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely i...

Descripción completa

Detalles Bibliográficos
Autores principales: Demichev, Vadim, Tober-Lau, Pinkus, Nazarenko, Tatiana, Lemke, Oliver, Kaur Aulakh, Simran, Whitwell, Harry J., Röhl, Annika, Freiwald, Anja, Mittermaier, Mirja, Szyrwiel, Lukasz, Ludwig, Daniela, Correia-Melo, Clara, Lippert, Lena J., Helbig, Elisa T., Stubbemann, Paula, Olk, Nadine, Thibeault, Charlotte, Grüning, Nana-Maria, Blyuss, Oleg, Vernardis, Spyros, White, Matthew, Messner, Christoph B., Joannidis, Michael, Sonnweber, Thomas, Klein, Sebastian J., Pizzini, Alex, Wohlfarter, Yvonne, Sahanic, Sabina, Hilbe, Richard, Schaefer, Benedikt, Wagner, Sonja, Machleidt, Felix, Garcia, Carmen, Ruwwe-Glösenkamp, Christoph, Lingscheid, Tilman, Bosquillon de Jarcy, Laure, Stegemann, Miriam S., Pfeiffer, Moritz, Jürgens, Linda, Denker, Sophy, Zickler, Daniel, Spies, Claudia, Edel, Andreas, Müller, Nils B., Enghard, Philipp, Zelezniak, Aleksej, Bellmann-Weiler, Rosa, Weiss, Günter, Campbell, Archie, Hayward, Caroline, Porteous, David J., Marioni, Riccardo E., Uhrig, Alexander, Zoller, Heinz, Löffler-Ragg, Judith, Keller, Markus A., Tancevski, Ivan, Timms, John F., Zaikin, Alexey, Hippenstiel, Stefan, Ramharter, Michael, Müller-Redetzky, Holger, Witzenrath, Martin, Suttorp, Norbert, Lilley, Kathryn, Mülleder, Michael, Sander, Leif Erik, Kurth, Florian, Ralser, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931303/
https://www.ncbi.nlm.nih.gov/pubmed/36812516
http://dx.doi.org/10.1371/journal.pdig.0000007
_version_ 1784889219763666944
author Demichev, Vadim
Tober-Lau, Pinkus
Nazarenko, Tatiana
Lemke, Oliver
Kaur Aulakh, Simran
Whitwell, Harry J.
Röhl, Annika
Freiwald, Anja
Mittermaier, Mirja
Szyrwiel, Lukasz
Ludwig, Daniela
Correia-Melo, Clara
Lippert, Lena J.
Helbig, Elisa T.
Stubbemann, Paula
Olk, Nadine
Thibeault, Charlotte
Grüning, Nana-Maria
Blyuss, Oleg
Vernardis, Spyros
White, Matthew
Messner, Christoph B.
Joannidis, Michael
Sonnweber, Thomas
Klein, Sebastian J.
Pizzini, Alex
Wohlfarter, Yvonne
Sahanic, Sabina
Hilbe, Richard
Schaefer, Benedikt
Wagner, Sonja
Machleidt, Felix
Garcia, Carmen
Ruwwe-Glösenkamp, Christoph
Lingscheid, Tilman
Bosquillon de Jarcy, Laure
Stegemann, Miriam S.
Pfeiffer, Moritz
Jürgens, Linda
Denker, Sophy
Zickler, Daniel
Spies, Claudia
Edel, Andreas
Müller, Nils B.
Enghard, Philipp
Zelezniak, Aleksej
Bellmann-Weiler, Rosa
Weiss, Günter
Campbell, Archie
Hayward, Caroline
Porteous, David J.
Marioni, Riccardo E.
Uhrig, Alexander
Zoller, Heinz
Löffler-Ragg, Judith
Keller, Markus A.
Tancevski, Ivan
Timms, John F.
Zaikin, Alexey
Hippenstiel, Stefan
Ramharter, Michael
Müller-Redetzky, Holger
Witzenrath, Martin
Suttorp, Norbert
Lilley, Kathryn
Mülleder, Michael
Sander, Leif Erik
Kurth, Florian
Ralser, Markus
author_facet Demichev, Vadim
Tober-Lau, Pinkus
Nazarenko, Tatiana
Lemke, Oliver
Kaur Aulakh, Simran
Whitwell, Harry J.
Röhl, Annika
Freiwald, Anja
Mittermaier, Mirja
Szyrwiel, Lukasz
Ludwig, Daniela
Correia-Melo, Clara
Lippert, Lena J.
Helbig, Elisa T.
Stubbemann, Paula
Olk, Nadine
Thibeault, Charlotte
Grüning, Nana-Maria
Blyuss, Oleg
Vernardis, Spyros
White, Matthew
Messner, Christoph B.
Joannidis, Michael
Sonnweber, Thomas
Klein, Sebastian J.
Pizzini, Alex
Wohlfarter, Yvonne
Sahanic, Sabina
Hilbe, Richard
Schaefer, Benedikt
Wagner, Sonja
Machleidt, Felix
Garcia, Carmen
Ruwwe-Glösenkamp, Christoph
Lingscheid, Tilman
Bosquillon de Jarcy, Laure
Stegemann, Miriam S.
Pfeiffer, Moritz
Jürgens, Linda
Denker, Sophy
Zickler, Daniel
Spies, Claudia
Edel, Andreas
Müller, Nils B.
Enghard, Philipp
Zelezniak, Aleksej
Bellmann-Weiler, Rosa
Weiss, Günter
Campbell, Archie
Hayward, Caroline
Porteous, David J.
Marioni, Riccardo E.
Uhrig, Alexander
Zoller, Heinz
Löffler-Ragg, Judith
Keller, Markus A.
Tancevski, Ivan
Timms, John F.
Zaikin, Alexey
Hippenstiel, Stefan
Ramharter, Michael
Müller-Redetzky, Holger
Witzenrath, Martin
Suttorp, Norbert
Lilley, Kathryn
Mülleder, Michael
Sander, Leif Erik
Kurth, Florian
Ralser, Markus
author_sort Demichev, Vadim
collection PubMed
description Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care.
format Online
Article
Text
id pubmed-9931303
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-99313032023-02-16 A proteomic survival predictor for COVID-19 patients in intensive care Demichev, Vadim Tober-Lau, Pinkus Nazarenko, Tatiana Lemke, Oliver Kaur Aulakh, Simran Whitwell, Harry J. Röhl, Annika Freiwald, Anja Mittermaier, Mirja Szyrwiel, Lukasz Ludwig, Daniela Correia-Melo, Clara Lippert, Lena J. Helbig, Elisa T. Stubbemann, Paula Olk, Nadine Thibeault, Charlotte Grüning, Nana-Maria Blyuss, Oleg Vernardis, Spyros White, Matthew Messner, Christoph B. Joannidis, Michael Sonnweber, Thomas Klein, Sebastian J. Pizzini, Alex Wohlfarter, Yvonne Sahanic, Sabina Hilbe, Richard Schaefer, Benedikt Wagner, Sonja Machleidt, Felix Garcia, Carmen Ruwwe-Glösenkamp, Christoph Lingscheid, Tilman Bosquillon de Jarcy, Laure Stegemann, Miriam S. Pfeiffer, Moritz Jürgens, Linda Denker, Sophy Zickler, Daniel Spies, Claudia Edel, Andreas Müller, Nils B. Enghard, Philipp Zelezniak, Aleksej Bellmann-Weiler, Rosa Weiss, Günter Campbell, Archie Hayward, Caroline Porteous, David J. Marioni, Riccardo E. Uhrig, Alexander Zoller, Heinz Löffler-Ragg, Judith Keller, Markus A. Tancevski, Ivan Timms, John F. Zaikin, Alexey Hippenstiel, Stefan Ramharter, Michael Müller-Redetzky, Holger Witzenrath, Martin Suttorp, Norbert Lilley, Kathryn Mülleder, Michael Sander, Leif Erik Kurth, Florian Ralser, Markus PLOS Digit Health Research Article Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care. Public Library of Science 2022-01-18 /pmc/articles/PMC9931303/ /pubmed/36812516 http://dx.doi.org/10.1371/journal.pdig.0000007 Text en © 2022 Demichev et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Demichev, Vadim
Tober-Lau, Pinkus
Nazarenko, Tatiana
Lemke, Oliver
Kaur Aulakh, Simran
Whitwell, Harry J.
Röhl, Annika
Freiwald, Anja
Mittermaier, Mirja
Szyrwiel, Lukasz
Ludwig, Daniela
Correia-Melo, Clara
Lippert, Lena J.
Helbig, Elisa T.
Stubbemann, Paula
Olk, Nadine
Thibeault, Charlotte
Grüning, Nana-Maria
Blyuss, Oleg
Vernardis, Spyros
White, Matthew
Messner, Christoph B.
Joannidis, Michael
Sonnweber, Thomas
Klein, Sebastian J.
Pizzini, Alex
Wohlfarter, Yvonne
Sahanic, Sabina
Hilbe, Richard
Schaefer, Benedikt
Wagner, Sonja
Machleidt, Felix
Garcia, Carmen
Ruwwe-Glösenkamp, Christoph
Lingscheid, Tilman
Bosquillon de Jarcy, Laure
Stegemann, Miriam S.
Pfeiffer, Moritz
Jürgens, Linda
Denker, Sophy
Zickler, Daniel
Spies, Claudia
Edel, Andreas
Müller, Nils B.
Enghard, Philipp
Zelezniak, Aleksej
Bellmann-Weiler, Rosa
Weiss, Günter
Campbell, Archie
Hayward, Caroline
Porteous, David J.
Marioni, Riccardo E.
Uhrig, Alexander
Zoller, Heinz
Löffler-Ragg, Judith
Keller, Markus A.
Tancevski, Ivan
Timms, John F.
Zaikin, Alexey
Hippenstiel, Stefan
Ramharter, Michael
Müller-Redetzky, Holger
Witzenrath, Martin
Suttorp, Norbert
Lilley, Kathryn
Mülleder, Michael
Sander, Leif Erik
Kurth, Florian
Ralser, Markus
A proteomic survival predictor for COVID-19 patients in intensive care
title A proteomic survival predictor for COVID-19 patients in intensive care
title_full A proteomic survival predictor for COVID-19 patients in intensive care
title_fullStr A proteomic survival predictor for COVID-19 patients in intensive care
title_full_unstemmed A proteomic survival predictor for COVID-19 patients in intensive care
title_short A proteomic survival predictor for COVID-19 patients in intensive care
title_sort proteomic survival predictor for covid-19 patients in intensive care
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931303/
https://www.ncbi.nlm.nih.gov/pubmed/36812516
http://dx.doi.org/10.1371/journal.pdig.0000007
work_keys_str_mv AT demichevvadim aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT toberlaupinkus aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT nazarenkotatiana aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lemkeoliver aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT kauraulakhsimran aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT whitwellharryj aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT rohlannika aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT freiwaldanja aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT mittermaiermirja aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT szyrwiellukasz aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT ludwigdaniela aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT correiameloclara aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lippertlenaj aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT helbigelisat aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT stubbemannpaula aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT olknadine aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT thibeaultcharlotte aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT gruningnanamaria aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT blyussoleg aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT vernardisspyros aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT whitematthew aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT messnerchristophb aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT joannidismichael aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT sonnweberthomas aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT kleinsebastianj aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT pizzinialex aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT wohlfarteryvonne aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT sahanicsabina aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT hilberichard aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT schaeferbenedikt aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT wagnersonja aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT machleidtfelix aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT garciacarmen aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT ruwweglosenkampchristoph aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lingscheidtilman aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT bosquillondejarcylaure aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT stegemannmiriams aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT pfeiffermoritz aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT jurgenslinda aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT denkersophy aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT zicklerdaniel aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT spiesclaudia aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT edelandreas aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT mullernilsb aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT enghardphilipp aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT zelezniakaleksej aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT bellmannweilerrosa aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT weissgunter aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT campbellarchie aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT haywardcaroline aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT porteousdavidj aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT marioniriccardoe aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT uhrigalexander aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT zollerheinz aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lofflerraggjudith aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT kellermarkusa aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT tancevskiivan aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT timmsjohnf aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT zaikinalexey aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT hippenstielstefan aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT ramhartermichael aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT mullerredetzkyholger aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT witzenrathmartin aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT suttorpnorbert aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lilleykathryn aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT mulledermichael aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT sanderleiferik aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT kurthflorian aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT ralsermarkus aproteomicsurvivalpredictorforcovid19patientsinintensivecare
AT demichevvadim proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT toberlaupinkus proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT nazarenkotatiana proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lemkeoliver proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT kauraulakhsimran proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT whitwellharryj proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT rohlannika proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT freiwaldanja proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT mittermaiermirja proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT szyrwiellukasz proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT ludwigdaniela proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT correiameloclara proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lippertlenaj proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT helbigelisat proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT stubbemannpaula proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT olknadine proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT thibeaultcharlotte proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT gruningnanamaria proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT blyussoleg proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT vernardisspyros proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT whitematthew proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT messnerchristophb proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT joannidismichael proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT sonnweberthomas proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT kleinsebastianj proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT pizzinialex proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT wohlfarteryvonne proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT sahanicsabina proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT hilberichard proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT schaeferbenedikt proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT wagnersonja proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT machleidtfelix proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT garciacarmen proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT ruwweglosenkampchristoph proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lingscheidtilman proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT bosquillondejarcylaure proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT stegemannmiriams proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT pfeiffermoritz proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT jurgenslinda proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT denkersophy proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT zicklerdaniel proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT spiesclaudia proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT edelandreas proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT mullernilsb proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT enghardphilipp proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT zelezniakaleksej proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT bellmannweilerrosa proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT weissgunter proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT campbellarchie proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT haywardcaroline proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT porteousdavidj proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT marioniriccardoe proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT uhrigalexander proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT zollerheinz proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lofflerraggjudith proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT kellermarkusa proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT tancevskiivan proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT timmsjohnf proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT zaikinalexey proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT hippenstielstefan proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT ramhartermichael proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT mullerredetzkyholger proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT witzenrathmartin proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT suttorpnorbert proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT lilleykathryn proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT mulledermichael proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT sanderleiferik proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT kurthflorian proteomicsurvivalpredictorforcovid19patientsinintensivecare
AT ralsermarkus proteomicsurvivalpredictorforcovid19patientsinintensivecare