Cargando…
A proteomic survival predictor for COVID-19 patients in intensive care
Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely i...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931303/ https://www.ncbi.nlm.nih.gov/pubmed/36812516 http://dx.doi.org/10.1371/journal.pdig.0000007 |
_version_ | 1784889219763666944 |
---|---|
author | Demichev, Vadim Tober-Lau, Pinkus Nazarenko, Tatiana Lemke, Oliver Kaur Aulakh, Simran Whitwell, Harry J. Röhl, Annika Freiwald, Anja Mittermaier, Mirja Szyrwiel, Lukasz Ludwig, Daniela Correia-Melo, Clara Lippert, Lena J. Helbig, Elisa T. Stubbemann, Paula Olk, Nadine Thibeault, Charlotte Grüning, Nana-Maria Blyuss, Oleg Vernardis, Spyros White, Matthew Messner, Christoph B. Joannidis, Michael Sonnweber, Thomas Klein, Sebastian J. Pizzini, Alex Wohlfarter, Yvonne Sahanic, Sabina Hilbe, Richard Schaefer, Benedikt Wagner, Sonja Machleidt, Felix Garcia, Carmen Ruwwe-Glösenkamp, Christoph Lingscheid, Tilman Bosquillon de Jarcy, Laure Stegemann, Miriam S. Pfeiffer, Moritz Jürgens, Linda Denker, Sophy Zickler, Daniel Spies, Claudia Edel, Andreas Müller, Nils B. Enghard, Philipp Zelezniak, Aleksej Bellmann-Weiler, Rosa Weiss, Günter Campbell, Archie Hayward, Caroline Porteous, David J. Marioni, Riccardo E. Uhrig, Alexander Zoller, Heinz Löffler-Ragg, Judith Keller, Markus A. Tancevski, Ivan Timms, John F. Zaikin, Alexey Hippenstiel, Stefan Ramharter, Michael Müller-Redetzky, Holger Witzenrath, Martin Suttorp, Norbert Lilley, Kathryn Mülleder, Michael Sander, Leif Erik Kurth, Florian Ralser, Markus |
author_facet | Demichev, Vadim Tober-Lau, Pinkus Nazarenko, Tatiana Lemke, Oliver Kaur Aulakh, Simran Whitwell, Harry J. Röhl, Annika Freiwald, Anja Mittermaier, Mirja Szyrwiel, Lukasz Ludwig, Daniela Correia-Melo, Clara Lippert, Lena J. Helbig, Elisa T. Stubbemann, Paula Olk, Nadine Thibeault, Charlotte Grüning, Nana-Maria Blyuss, Oleg Vernardis, Spyros White, Matthew Messner, Christoph B. Joannidis, Michael Sonnweber, Thomas Klein, Sebastian J. Pizzini, Alex Wohlfarter, Yvonne Sahanic, Sabina Hilbe, Richard Schaefer, Benedikt Wagner, Sonja Machleidt, Felix Garcia, Carmen Ruwwe-Glösenkamp, Christoph Lingscheid, Tilman Bosquillon de Jarcy, Laure Stegemann, Miriam S. Pfeiffer, Moritz Jürgens, Linda Denker, Sophy Zickler, Daniel Spies, Claudia Edel, Andreas Müller, Nils B. Enghard, Philipp Zelezniak, Aleksej Bellmann-Weiler, Rosa Weiss, Günter Campbell, Archie Hayward, Caroline Porteous, David J. Marioni, Riccardo E. Uhrig, Alexander Zoller, Heinz Löffler-Ragg, Judith Keller, Markus A. Tancevski, Ivan Timms, John F. Zaikin, Alexey Hippenstiel, Stefan Ramharter, Michael Müller-Redetzky, Holger Witzenrath, Martin Suttorp, Norbert Lilley, Kathryn Mülleder, Michael Sander, Leif Erik Kurth, Florian Ralser, Markus |
author_sort | Demichev, Vadim |
collection | PubMed |
description | Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care. |
format | Online Article Text |
id | pubmed-9931303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-99313032023-02-16 A proteomic survival predictor for COVID-19 patients in intensive care Demichev, Vadim Tober-Lau, Pinkus Nazarenko, Tatiana Lemke, Oliver Kaur Aulakh, Simran Whitwell, Harry J. Röhl, Annika Freiwald, Anja Mittermaier, Mirja Szyrwiel, Lukasz Ludwig, Daniela Correia-Melo, Clara Lippert, Lena J. Helbig, Elisa T. Stubbemann, Paula Olk, Nadine Thibeault, Charlotte Grüning, Nana-Maria Blyuss, Oleg Vernardis, Spyros White, Matthew Messner, Christoph B. Joannidis, Michael Sonnweber, Thomas Klein, Sebastian J. Pizzini, Alex Wohlfarter, Yvonne Sahanic, Sabina Hilbe, Richard Schaefer, Benedikt Wagner, Sonja Machleidt, Felix Garcia, Carmen Ruwwe-Glösenkamp, Christoph Lingscheid, Tilman Bosquillon de Jarcy, Laure Stegemann, Miriam S. Pfeiffer, Moritz Jürgens, Linda Denker, Sophy Zickler, Daniel Spies, Claudia Edel, Andreas Müller, Nils B. Enghard, Philipp Zelezniak, Aleksej Bellmann-Weiler, Rosa Weiss, Günter Campbell, Archie Hayward, Caroline Porteous, David J. Marioni, Riccardo E. Uhrig, Alexander Zoller, Heinz Löffler-Ragg, Judith Keller, Markus A. Tancevski, Ivan Timms, John F. Zaikin, Alexey Hippenstiel, Stefan Ramharter, Michael Müller-Redetzky, Holger Witzenrath, Martin Suttorp, Norbert Lilley, Kathryn Mülleder, Michael Sander, Leif Erik Kurth, Florian Ralser, Markus PLOS Digit Health Research Article Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care. Public Library of Science 2022-01-18 /pmc/articles/PMC9931303/ /pubmed/36812516 http://dx.doi.org/10.1371/journal.pdig.0000007 Text en © 2022 Demichev et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Demichev, Vadim Tober-Lau, Pinkus Nazarenko, Tatiana Lemke, Oliver Kaur Aulakh, Simran Whitwell, Harry J. Röhl, Annika Freiwald, Anja Mittermaier, Mirja Szyrwiel, Lukasz Ludwig, Daniela Correia-Melo, Clara Lippert, Lena J. Helbig, Elisa T. Stubbemann, Paula Olk, Nadine Thibeault, Charlotte Grüning, Nana-Maria Blyuss, Oleg Vernardis, Spyros White, Matthew Messner, Christoph B. Joannidis, Michael Sonnweber, Thomas Klein, Sebastian J. Pizzini, Alex Wohlfarter, Yvonne Sahanic, Sabina Hilbe, Richard Schaefer, Benedikt Wagner, Sonja Machleidt, Felix Garcia, Carmen Ruwwe-Glösenkamp, Christoph Lingscheid, Tilman Bosquillon de Jarcy, Laure Stegemann, Miriam S. Pfeiffer, Moritz Jürgens, Linda Denker, Sophy Zickler, Daniel Spies, Claudia Edel, Andreas Müller, Nils B. Enghard, Philipp Zelezniak, Aleksej Bellmann-Weiler, Rosa Weiss, Günter Campbell, Archie Hayward, Caroline Porteous, David J. Marioni, Riccardo E. Uhrig, Alexander Zoller, Heinz Löffler-Ragg, Judith Keller, Markus A. Tancevski, Ivan Timms, John F. Zaikin, Alexey Hippenstiel, Stefan Ramharter, Michael Müller-Redetzky, Holger Witzenrath, Martin Suttorp, Norbert Lilley, Kathryn Mülleder, Michael Sander, Leif Erik Kurth, Florian Ralser, Markus A proteomic survival predictor for COVID-19 patients in intensive care |
title | A proteomic survival predictor for COVID-19 patients in intensive care |
title_full | A proteomic survival predictor for COVID-19 patients in intensive care |
title_fullStr | A proteomic survival predictor for COVID-19 patients in intensive care |
title_full_unstemmed | A proteomic survival predictor for COVID-19 patients in intensive care |
title_short | A proteomic survival predictor for COVID-19 patients in intensive care |
title_sort | proteomic survival predictor for covid-19 patients in intensive care |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931303/ https://www.ncbi.nlm.nih.gov/pubmed/36812516 http://dx.doi.org/10.1371/journal.pdig.0000007 |
work_keys_str_mv | AT demichevvadim aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT toberlaupinkus aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT nazarenkotatiana aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT lemkeoliver aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT kauraulakhsimran aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT whitwellharryj aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT rohlannika aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT freiwaldanja aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT mittermaiermirja aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT szyrwiellukasz aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT ludwigdaniela aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT correiameloclara aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT lippertlenaj aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT helbigelisat aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT stubbemannpaula aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT olknadine aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT thibeaultcharlotte aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT gruningnanamaria aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT blyussoleg aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT vernardisspyros aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT whitematthew aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT messnerchristophb aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT joannidismichael aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT sonnweberthomas aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT kleinsebastianj aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT pizzinialex aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT wohlfarteryvonne aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT sahanicsabina aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT hilberichard aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT schaeferbenedikt aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT wagnersonja aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT machleidtfelix aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT garciacarmen aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT ruwweglosenkampchristoph aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT lingscheidtilman aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT bosquillondejarcylaure aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT stegemannmiriams aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT pfeiffermoritz aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT jurgenslinda aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT denkersophy aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT zicklerdaniel aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT spiesclaudia aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT edelandreas aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT mullernilsb aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT enghardphilipp aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT zelezniakaleksej aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT bellmannweilerrosa aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT weissgunter aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT campbellarchie aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT haywardcaroline aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT porteousdavidj aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT marioniriccardoe aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT uhrigalexander aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT zollerheinz aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT lofflerraggjudith aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT kellermarkusa aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT tancevskiivan aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT timmsjohnf aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT zaikinalexey aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT hippenstielstefan aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT ramhartermichael aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT mullerredetzkyholger aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT witzenrathmartin aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT suttorpnorbert aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT lilleykathryn aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT mulledermichael aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT sanderleiferik aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT kurthflorian aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT ralsermarkus aproteomicsurvivalpredictorforcovid19patientsinintensivecare AT demichevvadim proteomicsurvivalpredictorforcovid19patientsinintensivecare AT toberlaupinkus proteomicsurvivalpredictorforcovid19patientsinintensivecare AT nazarenkotatiana proteomicsurvivalpredictorforcovid19patientsinintensivecare AT lemkeoliver proteomicsurvivalpredictorforcovid19patientsinintensivecare AT kauraulakhsimran proteomicsurvivalpredictorforcovid19patientsinintensivecare AT whitwellharryj proteomicsurvivalpredictorforcovid19patientsinintensivecare AT rohlannika proteomicsurvivalpredictorforcovid19patientsinintensivecare AT freiwaldanja proteomicsurvivalpredictorforcovid19patientsinintensivecare AT mittermaiermirja proteomicsurvivalpredictorforcovid19patientsinintensivecare AT szyrwiellukasz proteomicsurvivalpredictorforcovid19patientsinintensivecare AT ludwigdaniela proteomicsurvivalpredictorforcovid19patientsinintensivecare AT correiameloclara proteomicsurvivalpredictorforcovid19patientsinintensivecare AT lippertlenaj proteomicsurvivalpredictorforcovid19patientsinintensivecare AT helbigelisat proteomicsurvivalpredictorforcovid19patientsinintensivecare AT stubbemannpaula proteomicsurvivalpredictorforcovid19patientsinintensivecare AT olknadine proteomicsurvivalpredictorforcovid19patientsinintensivecare AT thibeaultcharlotte proteomicsurvivalpredictorforcovid19patientsinintensivecare AT gruningnanamaria proteomicsurvivalpredictorforcovid19patientsinintensivecare AT blyussoleg proteomicsurvivalpredictorforcovid19patientsinintensivecare AT vernardisspyros proteomicsurvivalpredictorforcovid19patientsinintensivecare AT whitematthew proteomicsurvivalpredictorforcovid19patientsinintensivecare AT messnerchristophb proteomicsurvivalpredictorforcovid19patientsinintensivecare AT joannidismichael proteomicsurvivalpredictorforcovid19patientsinintensivecare AT sonnweberthomas proteomicsurvivalpredictorforcovid19patientsinintensivecare AT kleinsebastianj proteomicsurvivalpredictorforcovid19patientsinintensivecare AT pizzinialex proteomicsurvivalpredictorforcovid19patientsinintensivecare AT wohlfarteryvonne proteomicsurvivalpredictorforcovid19patientsinintensivecare AT sahanicsabina proteomicsurvivalpredictorforcovid19patientsinintensivecare AT hilberichard proteomicsurvivalpredictorforcovid19patientsinintensivecare AT schaeferbenedikt proteomicsurvivalpredictorforcovid19patientsinintensivecare AT wagnersonja proteomicsurvivalpredictorforcovid19patientsinintensivecare AT machleidtfelix proteomicsurvivalpredictorforcovid19patientsinintensivecare AT garciacarmen proteomicsurvivalpredictorforcovid19patientsinintensivecare AT ruwweglosenkampchristoph proteomicsurvivalpredictorforcovid19patientsinintensivecare AT lingscheidtilman proteomicsurvivalpredictorforcovid19patientsinintensivecare AT bosquillondejarcylaure proteomicsurvivalpredictorforcovid19patientsinintensivecare AT stegemannmiriams proteomicsurvivalpredictorforcovid19patientsinintensivecare AT pfeiffermoritz proteomicsurvivalpredictorforcovid19patientsinintensivecare AT jurgenslinda proteomicsurvivalpredictorforcovid19patientsinintensivecare AT denkersophy proteomicsurvivalpredictorforcovid19patientsinintensivecare AT zicklerdaniel proteomicsurvivalpredictorforcovid19patientsinintensivecare AT spiesclaudia proteomicsurvivalpredictorforcovid19patientsinintensivecare AT edelandreas proteomicsurvivalpredictorforcovid19patientsinintensivecare AT mullernilsb proteomicsurvivalpredictorforcovid19patientsinintensivecare AT enghardphilipp proteomicsurvivalpredictorforcovid19patientsinintensivecare AT zelezniakaleksej proteomicsurvivalpredictorforcovid19patientsinintensivecare AT bellmannweilerrosa proteomicsurvivalpredictorforcovid19patientsinintensivecare AT weissgunter proteomicsurvivalpredictorforcovid19patientsinintensivecare AT campbellarchie proteomicsurvivalpredictorforcovid19patientsinintensivecare AT haywardcaroline proteomicsurvivalpredictorforcovid19patientsinintensivecare AT porteousdavidj proteomicsurvivalpredictorforcovid19patientsinintensivecare AT marioniriccardoe proteomicsurvivalpredictorforcovid19patientsinintensivecare AT uhrigalexander proteomicsurvivalpredictorforcovid19patientsinintensivecare AT zollerheinz proteomicsurvivalpredictorforcovid19patientsinintensivecare AT lofflerraggjudith proteomicsurvivalpredictorforcovid19patientsinintensivecare AT kellermarkusa proteomicsurvivalpredictorforcovid19patientsinintensivecare AT tancevskiivan proteomicsurvivalpredictorforcovid19patientsinintensivecare AT timmsjohnf proteomicsurvivalpredictorforcovid19patientsinintensivecare AT zaikinalexey proteomicsurvivalpredictorforcovid19patientsinintensivecare AT hippenstielstefan proteomicsurvivalpredictorforcovid19patientsinintensivecare AT ramhartermichael proteomicsurvivalpredictorforcovid19patientsinintensivecare AT mullerredetzkyholger proteomicsurvivalpredictorforcovid19patientsinintensivecare AT witzenrathmartin proteomicsurvivalpredictorforcovid19patientsinintensivecare AT suttorpnorbert proteomicsurvivalpredictorforcovid19patientsinintensivecare AT lilleykathryn proteomicsurvivalpredictorforcovid19patientsinintensivecare AT mulledermichael proteomicsurvivalpredictorforcovid19patientsinintensivecare AT sanderleiferik proteomicsurvivalpredictorforcovid19patientsinintensivecare AT proteomicsurvivalpredictorforcovid19patientsinintensivecare AT kurthflorian proteomicsurvivalpredictorforcovid19patientsinintensivecare AT ralsermarkus proteomicsurvivalpredictorforcovid19patientsinintensivecare |