Cargando…
Machine-learning-based Web system for the prediction of chronic kidney disease progression and mortality
Chronic kidney disease (CKD) patients have high risks of end-stage kidney disease (ESKD) and pre-ESKD death. Therefore, accurately predicting these outcomes is useful among CKD patients, especially in those who are at high risk. Thus, we evaluated whether a machine-learning system can predict accura...
Autores principales: | Kanda, Eiichiro, Epureanu, Bogdan Iuliu, Adachi, Taiji, Kashihara, Naoki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931312/ https://www.ncbi.nlm.nih.gov/pubmed/36812636 http://dx.doi.org/10.1371/journal.pdig.0000188 |
Ejemplares similares
-
Application of explainable ensemble artificial intelligence model to categorization of hemodialysis-patient and treatment using nationwide-real-world data in Japan
por: Kanda, Eiichiro, et al.
Publicado: (2020) -
eGFR slope as a surrogate endpoint for clinical study in early stage of chronic kidney disease: from The Japan Chronic Kidney Disease Database
por: Itano, Seiji, et al.
Publicado: (2023) -
Cardiovascular and Renal Outcomes Associated With Hyperkalemia in Chronic Kidney Disease: A Hospital-Based Cohort Study
por: Kohsaka, Shun, et al.
Publicado: (2021) -
Effect of zinc deficiency on chronic kidney disease progression and effect modification by hypoalbuminemia
por: Tokuyama, Atsuyuki, et al.
Publicado: (2021) -
Machine Learning Models Predicting Cardiovascular and Renal Outcomes and Mortality in Patients with Hyperkalemia
por: Kanda, Eiichiro, et al.
Publicado: (2022)