Cargando…
Machine learning approaches to predict age from accelerometer records of physical activity at biobank scale
Physical activity improves quality of life and protects against age-related diseases. With age, physical activity tends to decrease, increasing vulnerability to disease in the elderly. In the following, we trained a neural network to predict age from 115,456 one week-long 100Hz wrist accelerometer r...
Autores principales: | Le Goallec, Alan, Collin, Sasha, Jabri, M’Hamed, Diai, Samuel, Vincent, Théo, Patel, Chirag J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931315/ https://www.ncbi.nlm.nih.gov/pubmed/36812610 http://dx.doi.org/10.1371/journal.pdig.0000176 |
Ejemplares similares
-
Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images
por: Le Goallec, Alan, et al.
Publicado: (2022) -
Age-dependent co-dependency structure of biomarkers in the general population of the United States
por: Le Goallec, Alan, et al.
Publicado: (2019) -
Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study
por: Doherty, Aiden, et al.
Publicado: (2017) -
A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type
por: Le Goallec, Alan, et al.
Publicado: (2020) -
Characterising the relationships between physiological indicators and all-cause mortality (NHANES): a population-based cohort study
por: Nguyen, Vy Kim, et al.
Publicado: (2021)