Cargando…
A systematic review of federated learning applications for biomedical data
OBJECTIVES: Federated learning (FL) allows multiple institutions to collaboratively develop a machine learning algorithm without sharing their data. Organizations instead share model parameters only, allowing them to benefit from a model built with a larger dataset while maintaining the privacy of t...
Autores principales: | Crowson, Matthew G., Moukheiber, Dana, Arévalo, Aldo Robles, Lam, Barbara D., Mantena, Sreekar, Rana, Aakanksha, Goss, Deborah, Bates, David W., Celi, Leo Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931322/ https://www.ncbi.nlm.nih.gov/pubmed/36812504 http://dx.doi.org/10.1371/journal.pdig.0000033 |
Ejemplares similares
-
Improving community health-care screenings with smartphone-based AI technologies
por: Mantena, Sreekar, et al.
Publicado: (2021) -
Benchmarking federated strategies in Peer-to-Peer Federated learning for biomedical data
por: Salmeron, Jose L., et al.
Publicado: (2023) -
Village mentoring and hive learning: The MIT Critical Data experience
por: Cosgriff, Christopher V., et al.
Publicado: (2021) -
Strategies and solutions to address Digital Determinants of Health (DDOH) across underinvested communities
por: Holmes Fee, Casey, et al.
Publicado: (2023) -
Strengthening healthcare delivery with remote patient monitoring in the time of COVID-19
por: Mantena, Sreekar, et al.
Publicado: (2021)