Cargando…
Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review
BACKGROUND: While artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively homogeneous datasets, and populations poorly-representative of underlying diversity, limits generalisability and risks biased AI-based d...
Autores principales: | Celi, Leo Anthony, Cellini, Jacqueline, Charpignon, Marie-Laure, Dee, Edward Christopher, Dernoncourt, Franck, Eber, Rene, Mitchell, William Greig, Moukheiber, Lama, Schirmer, Julian, Situ, Julia, Paguio, Joseph, Park, Joel, Wawira, Judy Gichoya, Yao, Seth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931338/ https://www.ncbi.nlm.nih.gov/pubmed/36812532 http://dx.doi.org/10.1371/journal.pdig.0000022 |
Ejemplares similares
-
Village mentoring and hive learning: The MIT Critical Data experience
por: Cosgriff, Christopher V., et al.
Publicado: (2021) -
AI pitfalls and what not to do: mitigating bias in AI
por: Gichoya, Judy Wawira, et al.
Publicado: (2023) -
Equity in essence: a call for operationalising fairness in machine learning for healthcare
por: Wawira Gichoya, Judy, et al.
Publicado: (2021) -
Equity should be fundamental to the emergence of innovation
por: Gallifant, Jack, et al.
Publicado: (2023) -
Operationalising fairness in medical algorithms
por: Parbhoo, Sonali, et al.
Publicado: (2022)