Cargando…
Mutational fitness landscape of human influenza H3N2 neuraminidase
Influenza neuraminidase (NA) has received increasing attention as an effective vaccine target. However, its mutational tolerance is not well characterized. Here, the fitness effects of >6,000 mutations in human H3N2 NA are probed using deep mutational scanning. Our result shows that while its ant...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931530/ https://www.ncbi.nlm.nih.gov/pubmed/36640354 http://dx.doi.org/10.1016/j.celrep.2022.111951 |
_version_ | 1784889268770963456 |
---|---|
author | Lei, Ruipeng Garcia, Andrea Hernandez Tan, Timothy J.C. Teo, Qi Wen Wang, Yiquan Zhang, Xiwen Luo, Shitong Nair, Satish K. Peng, Jian Wu, Nicholas C. |
author_facet | Lei, Ruipeng Garcia, Andrea Hernandez Tan, Timothy J.C. Teo, Qi Wen Wang, Yiquan Zhang, Xiwen Luo, Shitong Nair, Satish K. Peng, Jian Wu, Nicholas C. |
author_sort | Lei, Ruipeng |
collection | PubMed |
description | Influenza neuraminidase (NA) has received increasing attention as an effective vaccine target. However, its mutational tolerance is not well characterized. Here, the fitness effects of >6,000 mutations in human H3N2 NA are probed using deep mutational scanning. Our result shows that while its antigenic regions have high mutational tolerance, there are solvent-exposed regions with low mutational tolerance. We also find that protein stability is a major determinant of NA mutational fitness. The deep mutational scanning result correlates well with mutational fitness inferred from natural sequences using a protein language model, substantiating the relevance of our findings to the natural evolution of circulating strains. Additional analysis further suggests that human H3N2 NA is far from running out of mutations despite already evolving for >50 years. Overall, this study advances our understanding of the evolutionary potential of NA and the underlying biophysical constraints, which in turn provide insights into NA-based vaccine design. |
format | Online Article Text |
id | pubmed-9931530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-99315302023-02-16 Mutational fitness landscape of human influenza H3N2 neuraminidase Lei, Ruipeng Garcia, Andrea Hernandez Tan, Timothy J.C. Teo, Qi Wen Wang, Yiquan Zhang, Xiwen Luo, Shitong Nair, Satish K. Peng, Jian Wu, Nicholas C. Cell Rep Article Influenza neuraminidase (NA) has received increasing attention as an effective vaccine target. However, its mutational tolerance is not well characterized. Here, the fitness effects of >6,000 mutations in human H3N2 NA are probed using deep mutational scanning. Our result shows that while its antigenic regions have high mutational tolerance, there are solvent-exposed regions with low mutational tolerance. We also find that protein stability is a major determinant of NA mutational fitness. The deep mutational scanning result correlates well with mutational fitness inferred from natural sequences using a protein language model, substantiating the relevance of our findings to the natural evolution of circulating strains. Additional analysis further suggests that human H3N2 NA is far from running out of mutations despite already evolving for >50 years. Overall, this study advances our understanding of the evolutionary potential of NA and the underlying biophysical constraints, which in turn provide insights into NA-based vaccine design. 2023-01-31 2023-01-05 /pmc/articles/PMC9931530/ /pubmed/36640354 http://dx.doi.org/10.1016/j.celrep.2022.111951 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Lei, Ruipeng Garcia, Andrea Hernandez Tan, Timothy J.C. Teo, Qi Wen Wang, Yiquan Zhang, Xiwen Luo, Shitong Nair, Satish K. Peng, Jian Wu, Nicholas C. Mutational fitness landscape of human influenza H3N2 neuraminidase |
title | Mutational fitness landscape of human influenza H3N2 neuraminidase |
title_full | Mutational fitness landscape of human influenza H3N2 neuraminidase |
title_fullStr | Mutational fitness landscape of human influenza H3N2 neuraminidase |
title_full_unstemmed | Mutational fitness landscape of human influenza H3N2 neuraminidase |
title_short | Mutational fitness landscape of human influenza H3N2 neuraminidase |
title_sort | mutational fitness landscape of human influenza h3n2 neuraminidase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931530/ https://www.ncbi.nlm.nih.gov/pubmed/36640354 http://dx.doi.org/10.1016/j.celrep.2022.111951 |
work_keys_str_mv | AT leiruipeng mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT garciaandreahernandez mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT tantimothyjc mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT teoqiwen mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT wangyiquan mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT zhangxiwen mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT luoshitong mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT nairsatishk mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT pengjian mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase AT wunicholasc mutationalfitnesslandscapeofhumaninfluenzah3n2neuraminidase |