_version_ 1784889279948783616
author Mensah, Martin A.
Niskanen, Henri
Magalhaes, Alexandre P.
Basu, Shaon
Kircher, Martin
Sczakiel, Henrike L.
Reiter, Alisa M. V.
Elsner, Jonas
Meinecke, Peter
Biskup, Saskia
Chung, Brian H. Y.
Dombrowsky, Gregor
Eckmann-Scholz, Christel
Hitz, Marc Phillip
Hoischen, Alexander
Holterhus, Paul-Martin
Hülsemann, Wiebke
Kahrizi, Kimia
Kalscheuer, Vera M.
Kan, Anita
Krumbiegel, Mandy
Kurth, Ingo
Leubner, Jonas
Longardt, Ann Carolin
Moritz, Jörg D.
Najmabadi, Hossein
Skipalova, Karolina
Snijders Blok, Lot
Tzschach, Andreas
Wiedersberg, Eberhard
Zenker, Martin
Garcia-Cabau, Carla
Buschow, René
Salvatella, Xavier
Kraushar, Matthew L.
Mundlos, Stefan
Caliebe, Almuth
Spielmann, Malte
Horn, Denise
Hnisz, Denes
author_facet Mensah, Martin A.
Niskanen, Henri
Magalhaes, Alexandre P.
Basu, Shaon
Kircher, Martin
Sczakiel, Henrike L.
Reiter, Alisa M. V.
Elsner, Jonas
Meinecke, Peter
Biskup, Saskia
Chung, Brian H. Y.
Dombrowsky, Gregor
Eckmann-Scholz, Christel
Hitz, Marc Phillip
Hoischen, Alexander
Holterhus, Paul-Martin
Hülsemann, Wiebke
Kahrizi, Kimia
Kalscheuer, Vera M.
Kan, Anita
Krumbiegel, Mandy
Kurth, Ingo
Leubner, Jonas
Longardt, Ann Carolin
Moritz, Jörg D.
Najmabadi, Hossein
Skipalova, Karolina
Snijders Blok, Lot
Tzschach, Andreas
Wiedersberg, Eberhard
Zenker, Martin
Garcia-Cabau, Carla
Buschow, René
Salvatella, Xavier
Kraushar, Matthew L.
Mundlos, Stefan
Caliebe, Almuth
Spielmann, Malte
Horn, Denise
Hnisz, Denes
author_sort Mensah, Martin A.
collection PubMed
description Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions(1–3). Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus(4,5). This suggests that mutations in disordered proteins may alter condensate properties and function(6–8). Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.
format Online
Article
Text
id pubmed-9931588
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-99315882023-02-17 Aberrant phase separation and nucleolar dysfunction in rare genetic diseases Mensah, Martin A. Niskanen, Henri Magalhaes, Alexandre P. Basu, Shaon Kircher, Martin Sczakiel, Henrike L. Reiter, Alisa M. V. Elsner, Jonas Meinecke, Peter Biskup, Saskia Chung, Brian H. Y. Dombrowsky, Gregor Eckmann-Scholz, Christel Hitz, Marc Phillip Hoischen, Alexander Holterhus, Paul-Martin Hülsemann, Wiebke Kahrizi, Kimia Kalscheuer, Vera M. Kan, Anita Krumbiegel, Mandy Kurth, Ingo Leubner, Jonas Longardt, Ann Carolin Moritz, Jörg D. Najmabadi, Hossein Skipalova, Karolina Snijders Blok, Lot Tzschach, Andreas Wiedersberg, Eberhard Zenker, Martin Garcia-Cabau, Carla Buschow, René Salvatella, Xavier Kraushar, Matthew L. Mundlos, Stefan Caliebe, Almuth Spielmann, Malte Horn, Denise Hnisz, Denes Nature Article Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions(1–3). Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus(4,5). This suggests that mutations in disordered proteins may alter condensate properties and function(6–8). Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans. Nature Publishing Group UK 2023-02-08 2023 /pmc/articles/PMC9931588/ /pubmed/36755093 http://dx.doi.org/10.1038/s41586-022-05682-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mensah, Martin A.
Niskanen, Henri
Magalhaes, Alexandre P.
Basu, Shaon
Kircher, Martin
Sczakiel, Henrike L.
Reiter, Alisa M. V.
Elsner, Jonas
Meinecke, Peter
Biskup, Saskia
Chung, Brian H. Y.
Dombrowsky, Gregor
Eckmann-Scholz, Christel
Hitz, Marc Phillip
Hoischen, Alexander
Holterhus, Paul-Martin
Hülsemann, Wiebke
Kahrizi, Kimia
Kalscheuer, Vera M.
Kan, Anita
Krumbiegel, Mandy
Kurth, Ingo
Leubner, Jonas
Longardt, Ann Carolin
Moritz, Jörg D.
Najmabadi, Hossein
Skipalova, Karolina
Snijders Blok, Lot
Tzschach, Andreas
Wiedersberg, Eberhard
Zenker, Martin
Garcia-Cabau, Carla
Buschow, René
Salvatella, Xavier
Kraushar, Matthew L.
Mundlos, Stefan
Caliebe, Almuth
Spielmann, Malte
Horn, Denise
Hnisz, Denes
Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
title Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
title_full Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
title_fullStr Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
title_full_unstemmed Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
title_short Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
title_sort aberrant phase separation and nucleolar dysfunction in rare genetic diseases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931588/
https://www.ncbi.nlm.nih.gov/pubmed/36755093
http://dx.doi.org/10.1038/s41586-022-05682-1
work_keys_str_mv AT mensahmartina aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT niskanenhenri aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT magalhaesalexandrep aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT basushaon aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT kirchermartin aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT sczakielhenrikel aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT reiteralisamv aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT elsnerjonas aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT meineckepeter aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT biskupsaskia aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT chungbrianhy aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT dombrowskygregor aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT eckmannscholzchristel aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT hitzmarcphillip aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT hoischenalexander aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT holterhuspaulmartin aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT hulsemannwiebke aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT kahrizikimia aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT kalscheuerveram aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT kananita aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT krumbiegelmandy aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT kurthingo aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT leubnerjonas aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT longardtanncarolin aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT moritzjorgd aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT najmabadihossein aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT skipalovakarolina aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT snijdersbloklot aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT tzschachandreas aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT wiedersbergeberhard aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT zenkermartin aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT garciacabaucarla aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT buschowrene aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT salvatellaxavier aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT krausharmatthewl aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT mundlosstefan aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT caliebealmuth aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT spielmannmalte aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT horndenise aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases
AT hniszdenes aberrantphaseseparationandnucleolardysfunctioninraregeneticdiseases